QuantFactory Banner

QuantFactory/Llama-3.1-EIRAI-8B-GGUF

This is quantized version of EIRTHAIMED/Llama-3.1-EIRAI-8B created using llama.cpp

Original Model Card

Logo_Website

Thai Medical Large Language Model

Github : Github Evaluate
PaPer :

Llama-3.1-EIRAI-8B-instruct

Llama-3.1-EIRAI-8B-instruct: developed an 8-billion parameter model specifically tailored for Thai medical applications, with expertise in both Thai medical language and English medical terminology. The model has demonstrated its capabilities through key benchmarks such as MMLU, MedQA, PubMedQA, and MedMCQA, as well as Thai language assessments like ThaiExam, M3Exam, XNLI, and XCOPA. Additionally, we have created a Clinically Adapted Model Enhanced test using the Thai language to support clinical use in hospitals and to further improve the performance of Thai medical Retrieval-Augmented Generation (RAG).

Notice

While Eir AI Thai Medical LLM is designed to encode high-quality medical knowledge, it is not yet optimized for safe, practical use in real-world medical settings. The model is still in the research phase and should not be used for clinical decision-making without further validation, including randomized controlled trials. It is available for researchers to explore the potential of LLMs in medical contexts, but real-world deployment is not recommended in its current version.

Safety and Future Work

The current version of Eir AI Thai Medical LLM is under active development. We advise against using it for medical applications until further testing is completed. Our goal is to continue enhancing the model through rigorous testing and real-world evaluation, ensuring that it can be safely integrated into healthcare systems in the future.

Model Overview

  • Model Architecture: Meta-Llama-3.1-8B-Instruct
  • Version: 1.0
  • License(s): llama3.1

Evaluations

Medical Model Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine MedQA PubMedQA MedMCQA Avg.
GPT-3.5 Turbo 1106 74.7 60.2 65.9 72.0 64.73 64.73 57.71 72.66 66.0 66.6
Thai LLMs
Eir AI-8B 75.1 80.0 69.6 76.8 77.1 66.5 64.5 79.0 58.6 71.9
Eir AI-8B + Prob 83.8 89.0 83.0 84.9 89.6 75.7 69.6 78.8 67.1 80.2
Typhoon-v1.5x-8B 75.9 79.0 63.7 70.6 77.1 63.6 59.7 74.4 58.0 69.1
OpenThaiGPT-beta-7B 37.4 38.0 4.5 32.7 36.1 32.4 32.4 62.0 31.8 34.1

Translation Performance Metrics

Model BLEU Score N-gram Precisions (%) BP Ratio
Typhoon-v1.5x-8B-Instruct 34.42 71.3/50.6/38.6/29.6 0.764 0.788
Meta Llama 3.1-8B Instruct 35.74 62.8/42.3/31.7/24.1 0.946 0.948
Eir AI-8B 61.10 76.1/64.6/56.6/50.1 1.000 1.006
Eir AI-8B-prob 47.91 74.0/58.0/48.2/40.6 0.890 0.896

Clinically Adapted Thai Medical Task Performance

Task GPT-3.5 Typhoon-v1.5x-8B-instruct GPT-4o Eir AI-8B
Named Entity Recognition 3.26 5.55 6.34 7.08
Temporal Information Extraction 3.83 5.46 6.15 7.05
Paraphrasing 2.36 4.68 6.35 7.06
Natural Language Generation 2.63 4.87 6.91 7.66
Keyword Extraction 2.60 5.15 7.01 7.35
Text Classification 2.92 6.21 5.36 6.75
Relation Extraction 3.29 5.94 4.37 6.92
Question Answering 3.70 4.92 6.11 6.82
Text Summarization 2.98 5.44 7.51 7.51
Abbreviation Expansion 3.99 5.96 6.24 7.82
Clinical Concept Normalization 2.67 5.63 5.82 6.55
Open-ended Question 3.32 5.55 6.77 7.27
Multiple-Choice Question 3.90 5.00 5.40 6.40
Coreference Resolution 3.48 4.55 4.88 6.43
Yes/No Question 2.71 5.86 4.86 7.38
Medical Translation 3.00 4.00 7.79 7.65
Medical Thai Extraction 2.81 7.16 8.62 8.16
Medical ICD Prediction 2.08 3.16 8.12 6.41
Average Score 3.05 5.33 6.38 7.11

Prompt Template

This model uses ChatML prompt template:

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Example Clinical Adapted ICD 10 Prediction

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are responsible for accurately assigning ICD-10 codes and to diagnose and document medical records.
Your expertise ensures that healthcare providers are properly reimbursed and that patient care is well-documented.
In this scenario, you will be presented with a series of medical records and your task is to provide the correct ICD-10 code(s)
and ICD-9 CM in procedures based on the information provided.

<|eot_id|>
<|start_header_id|>user<|end_header_id|>

"Chief Complaint :5เธงเธฑเธ™เธเนˆเธญเธ™เธกเธฒเธฃเธž.เธกเธตเน„เธ‚เน‰ เน„เธญ เธกเธตเน€เธชเธกเธซเธฐ เธกเธตเธ™เน‰เธณเธกเธนเธ เน€เธซเธ™เธทเนˆเธญเธข เธ›เธงเธ”เน€เธกเธทเนˆเธญเธขเธ•เธฒเธกเธ•เธฑเธง \r\n
Present illness : 5เธงเธฑเธ™เธเนˆเธญเธ™เธกเธฒเธฃเธž.เธกเธตเน„เธ‚เน‰ เน„เธญ เธกเธตเน€เธชเธกเธซเธฐ เธกเธตเธ™เน‰เธณเธกเธนเธ เน€เธซเธ™เธทเนˆเธญเธข เธ›เธงเธ”เน€เธกเธทเนˆเธญเธขเธ•เธฒเธกเธ•เธฑเธง  เธกเธตเธ™เน‰เธณเธกเธนเธ เน€เธฅเธทเธญเธ”เธเธณเน€เธ”เธฒเธˆเธฒเธฒเธเธ‚เน‰เธฒเธ‡เธ‚เธงเธฒ
เธ›เธเธดเธเธฒเธฃเธเธฃเธฐเธ—เธšเธเธฃเธฐเนเธ—เธ เน„เธกเนˆเธกเธตเน€เธˆเน‡เธšเธ„เธญ เน„เธกเนˆเธกเธตเธญเธฒเธเธฒเธฃเธญเนˆเธญเธ™เน€เธžเธฅเธตเธข เธกเธตเธญเธฒเธเธฒเธฃเธญเนˆเธญเธ™เน€เธžเธฅเธตเธข เน„เธญเธกเธฒเธ เน„เธญเธ•เธฅเธญเธ” เธกเธตเธญเธฒเธเธฒเธฃเธฃเธฐเธ„เธฒเธขเธ„เธญ เธ›เธฑเธชเธชเธฒเธงเธฐเธ›เธเธ•เธด เน„เธกเนˆเธกเธตเธ–เนˆเธฒเธขเน€เธซเธฅเธง
\r\n\r\nAllergy : |\r\n\r\nOther : no underlying disease\r\n\r\nPlan Treatment Day 1 of hospitalization : admit ward
\r\n\r\nReview of System { \r\n\r\n General :a thai adult female ,look sickness fatigue dry lip  moderate dehydration
\r\n Skin :no MP rash \r\n Eyes :not pale ,no icteric sclera \r\n Chest :secretion sound in both lung ,no crepitation , no wheezing \r
\n }
VitalSign First : {\n
BP : 117.0/63.0 mmHg\n
Pulse : 62.0 BPm\n
Temperature : 37.0 Celsius\n
Respiratory rate : 20.0\n
Weight : 50.000 kgs.\n
Height : 165.0 cm.\n
Painscore: N/A\n
O2SAT : 100\n}\n

Lab Results: \n

Electrolyte:Sodium (Na), Result : 143 mmol/L\r\n
Electrolyte:Potassium (K),Result : 3.8 mmol/L\r\n
Electrolyte:Chloride (Cl), Result : 108 mmol/L\r\n
Electrolyte:Bicarbonate (CO2),Result : 27.0 mmol/L\r\n
Creatinine (Serum):Creatinine, Result : 0.69 mg/dL\r\n
Creatinine (Serum):eGFR,Result : 100.41 ml/min/1.73 m^2\r\n
AST/SGOT:AST/SGOT, Result : 48 U/L\r\n
ALT/SGPT:ALT/SGPT, Result : 42 U/L\r\n
CBC:WBC Count,Result : 3.2 10^3/uL\r\n
CBC:RBC Count, Result : 3.57 10^6/uL\r\n
CBC:Hemoglobin (Hb), Result : 10.7 g/dL\r\n
CBC:Hematocrit (HCT),Result : 32.4 %\r\n
CBC:MCV, Result : 91 fL\r\n
CBC:MCH, Result : 30.0 pg\r\n
CBC:MCHC, Result : 33.0 g/dL\r\n
CBC:RDW-CV,Result : 12.9 %\r\n
CBC:Platelet Count, Result : 226 10^3/uL\r\n
CBC:Platelet Estimates, Result : Adequate \r\n
CBC:Neutrophils,Result : 41 %\r\n
CBC:Lymphocytes, Result : 46 %\r\n
CBC:Monocytes, Result : 9 %\r\n
CBC:Eosinophils, Result : 4 %\r\n
CBC:Basophils,Result : 0 %\r\n
COVID-19 Antigen (Rapid Test) For Admit:COVID-19 Antigen (Rapid Test), Result : Positive \r\n
Influenza A/B screening:Flu A,Result : Negative \r\n
Influenza A/B screening:Flu B, Result : Negative \n

X-ray Results: 15-05-2567 12:56 CHEST (PA, UPRIGHT)\r\n
\r\nHISTORY: Fever with productive cough and dyspnea for 5 days. \r\nCOMPARISON: None.\r\n
\r\n
FINDINGS:\r\n
TUBES/LINES: None.\r\nLUNGS: Normal lung volumes. Band-like opacity at right apical lung. Clear left lung.\r\n
PLEURA: No pneumothorax or effusion. Mild bilateral apical pleural thickening. \r\n
HEART AND MEDIASTINUM: Normal cardiac silhouette. Normal mediastinal contour.\r\n
BONY STRUCTURES: Mild scoliosis of the thoracic spine. \r\n\r\n
IMPRESSION:\r\n
- Band-like opacity at right apical lung, probably plate atelectasis or fibrosis\r\n- Mild bilateral apical pleural thickening"

<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

Let's analyze the provided information and document the appropriate ICD-10 codes based on the patient's symptoms and diagnosis.

### Step-by-Step Analysis:

1. **Understand the Symptoms and Diagnosis**:
   - The patient presents with a range of symptoms including fever, cough with sputum, fatigue, nasal discharge (including blood),
and dyspnea. The lab tests returned a positive COVID-19 antigen test, while the influenza test was negative.

2. **Identify Key Terms**:
   - Primary key terms include 'COVID-19 positive', 'fever', 'productive cough', 'dyspnea', and pulmonary findings from the X-ray.

3. **Locate the Main Category**:
   - The main categories for the conditions noted are:
     - COVID-19: U07.1
     - Possible acute bronchitis: J20 (based on the productive cough)
     - Other symptoms such as dizziness: R42
     - Evidence of acute respiratory infection: J06.9

4. **Identify Specific Codes**:
   - Based on the diagnosis:
     - COVID-19 confirmed case: U07.1
     - Acute bronchitis: J20.9 (considering unspecified acute bronchitis)
     - Dizziness (if noted as significant and problematic): R42
     - Unspecified acute upper respiratory infection: J06.9

5. **Check for Additional Codes or Modifiers**:
   - Considering the details provided, the primary diagnosis is the confirmed COVID-19 infection, while bronchiolitis
and dizziness might be secondary diagnoses.

6. **Validate the Code Selection**:
   - Confirm that the selected codes reflect the patient's symptoms accurately, including acute bronchitis
and any other significant symptoms presented.

7. **Document the ICD-10 Code**:
   - The ICD-10 codes are documented for all noted conditions accordingly."

```json
Answer: {
    "Primary_Diagnosis": {
        "Code": "U071",
        "Description": "COVID-19, virus identified"
    },
    "Secondary_Diagnosis": [
        {
            "Code": "J20",
            "Description": "Acute bronchitis due to unspecified organism"
        },
        {
            "Code": "R42",
            "Description": "Dizziness and giddiness"
        },
        {
            "Code": "J069",
            "Description": "Acute upper respiratory infection, unspecified"
        }
    ],
    "ICD9_Procedure": []
}

Example Clinical Adapted Thai Medical Extraction

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Task : Extract input the following patient information into output format Tone: the following medical text into
Thai in a fluent and elegant style.
Output Format.1.Age: \n2.Gender: \n3.Weight :\n4.Height : \n5.Chief Complaint: \n6.Symptoms and Signs: \n7.Medical History: \n
8.Current Medications:  \n9.Laboratory Results:  \n10.Imaging Findings:  \n11.Allergy: \n12.Drug Allergy:


<|eot_id|>
<|start_header_id|>user<|end_header_id|>
เธœเธนเน‰เธ›เนˆเธงเธขเธ‚เธญเธ‡เน€เธฃเธฒเน€เธ›เน‡เธ™เธŠเธฒเธขเธ–เธ™เธฑเธ”เธ—เธฑเน‰เธ‡เธชเธญเธ‡เธกเธทเธญ เธญเธฒเธขเธธ 43 เธ›เธต เธกเธตเธ›เธฃเธฐเธงเธฑเธ•เธดเธเธฒเธฃเธŠเธฑเธเธ—เธตเนˆเน„เธกเนˆเธชเธฒเธกเธฒเธฃเธ–เธ„เธงเธšเธ„เธธเธกเน„เธ”เน‰เธกเธฒเน€เธ›เน‡เธ™เน€เธงเธฅเธฒ 20 เธ›เธต เธฅเธฑเธเธฉเธ“เธฐเธเธฒเธฃเธŠเธฑเธเธ‚เธญเธ‡เน€เธ‚เธฒเธกเธฑเธเธˆเธฐเธฃเธงเธกเธ–เธถเธ‡เธเธฒเธฃเธฃเธนเน‰เธชเธถเธเธฃเน‰เธญเธ™เธงเธนเธšเธงเธฒเธšเนเธฅเธฐเธญเธฒเธเธฒเธฃเธ—เธฒเธ‡เธ›เธฃเธฐเธชเธฒเธ—เธชเธฑเธกเธœเธฑเธชเธญเธทเนˆเธ™ เน†
เธ—เธตเนˆเธžเธฑเธ’เธ™เธฒเน„เธ›เธชเธนเนˆเธเธฒเธฃเน€เธ„เธฅเธทเนˆเธญเธ™เน„เธซเธงเธ‚เธญเธ‡เธเธฅเน‰เธฒเธกเน€เธ™เธทเน‰เธญเธ—เธตเนˆเธกเธตเธˆเธธเธ”เธจเธนเธ™เธขเนŒเธเธฅเธฒเธ‡เธชเนˆเธงเธ™เนƒเธซเธเนˆเธ—เธฒเธ‡เธ”เน‰เธฒเธ™เธ‚เธงเธฒ เธเธฒเธฃเธ•เธฃเธงเธˆเธซเธฒเธชเธฒเน€เธซเธ•เธธเธ‚เธญเธ‡เธเธฒเธฃเธŠเธฑเธเธฃเธงเธกเธ–เธถเธ‡เธเธฒเธฃเธ–เนˆเธฒเธขเธ เธฒเธžเธ”เน‰เธงเธขเธ„เธฅเธทเนˆเธ™เนเธกเนˆเน€เธซเธฅเน‡เธเน„เธŸเธŸเน‰เธฒ (MRI) เธ‹เธถเนˆเธ‡เน€เธœเธขเนƒเธซเน‰เน€เธซเน‡เธ™เน€เธ™เธทเน‰เธญเธ‡เธญเธเน„เธ‚เธกเธฑเธ™เธ‚เธ™เธฒเธ”เนƒเธซเธเนˆเธ—เธตเนˆเน€เธชเน‰เธ™เธเธฅเธฒเธ‡เธชเธกเธญเธ‡
เธเธฒเธฃเธžเธฑเธ’เธ™เธฒเน„เธกเนˆเธชเธกเธšเธนเธฃเธ“เนŒเธ‚เธญเธ‡เธ„เธญเธฃเนŒเธ›เธฑเธชเธ„เธฒเน‚เธฅเธ‹เธฑเธกเธšเธฒเธ‡เธชเนˆเธงเธ™ เนเธฅเธฐเธฃเธญเธขเน‚เธฃเธ„เธ—เธตเนˆเธญเธขเธนเนˆเนƒเธเธฅเน‰เน€เธ„เธตเธขเธ‡เนƒเธ™เธชเธกเธญเธ‡เธชเนˆเธงเธ™เธซเธ™เน‰เธฒเธ‹เน‰เธฒเธขเธ—เธตเนˆเธ„เธฒเธ”เธงเนˆเธฒเธˆเธฐเน€เธ›เน‡เธ™เน€เธ™เธทเน‰เธญเธ‡เธญเธเธเธฅเธตเธญเธฒเธฅ (glial neoplasm) เธ•เธฒเธกเธฅเธฑเธเธฉเธ“เธฐเธ เธฒเธžเธ–เนˆเธฒเธขเธ—เธฒเธ‡เธฃเธฑเธ‡เธชเธต
เธฃเธญเธขเน‚เธฃเธ„เนƒเธ™เธชเธกเธญเธ‡เธชเนˆเธงเธ™เธซเธ™เน‰เธฒเธ‹เน‰เธฒเธขเธ”เน‰เธฒเธ™เธซเธ™เน‰เธฒเนเธฅเธฐเธ•เธฃเธ‡เธเธฅเธฒเธ‡เธ›เธฃเธฐเธเธญเธšเธ”เน‰เธงเธขเธเธฒเธฃเธเธฅเธฒเธขเน€เธ›เน‡เธ™เธซเธดเธ™เธ›เธนเธ™เนเธšเธšเน€เธ›เน‡เธ™เธเน‰เธญเธ™เธžเธฃเน‰เธญเธกเธเธฒเธฃเน€เธžเธดเนˆเธกเธ‚เธถเน‰เธ™เธ‚เธญเธ‡เธชเธฑเธเธเธฒเธ“ FLAIR เธ—เธตเนˆเธเธงเน‰เธฒเธ‡เธ‚เธงเธฒเธ‡เธ‹เธถเนˆเธ‡เน€เธเธตเนˆเธขเธงเธ‚เน‰เธญเธ‡เธเธฑเธšเน„เธˆเธฃเธฑเธชเธ‹เธดเธ‡เธเธนเน€เธฅเธ•เธ—เธฑเน‰เธ‡เธชเธญเธ‡เธ‚เน‰เธฒเธ‡เนเธฅเธฐเธชเธกเธญเธ‡เธชเนˆเธงเธ™เธซเธ™เน‰เธฒเธ‹เน‰เธฒเธข
(เธฃเธนเธ›เธ—เธตเนˆ ).\n\nเธเธฒเธฃเธˆเธฑเธ”เธเธฒเธฃเธ—เธฒเธ‡เธเธฒเธฃเนเธžเธ—เธขเนŒเธฅเน‰เธกเน€เธซเธฅเธงเนƒเธ™เธเธฒเธฃเธ„เธงเธšเธ„เธธเธกเธเธฒเธฃเธŠเธฑเธเธ‚เธญเธ‡เน€เธ‚เธฒเนเธฅเธฐเน€เธ‚เธฒเธ–เธนเธเธชเนˆเธ‡เธ•เนˆเธญเน€เธžเธทเนˆเธญเธซเธฒเธ—เธฒเธ‡เน€เธฅเธทเธญเธเนƒเธ™เธเธฒเธฃเธฃเธฑเธเธฉเธฒเธ”เน‰เธงเธขเธเธฒเธฃเธœเนˆเธฒเธ•เธฑเธ” เธฃเธญเธขเน‚เธฃเธ„เธ—เธตเนˆเน€เธžเธดเนˆเธกเธ‚เธถเน‰เธ™เธ–เธนเธเธชเธฑเธ‡เน€เธเธ•เธ”เน‰เธงเธขเธเธฒเธฃเธ–เนˆเธฒเธขเธ เธฒเธžเน€เธžเธดเนˆเธกเน€เธ•เธดเธกเนเธฅเธฐเธ‚เธญเธšเน€เธ‚เธ•เธ‚เธญเธ‡เธญเธฒเธเธฒเธฃเธšเธงเธกเธ™เน‰เธณเธเน‡เน€เธžเธดเนˆเธกเธ‚เธถเน‰เธ™เธ”เน‰เธงเธข
เธ„เธงเธฒเธกเธเธฑเธ‡เธงเธฅเน€เธเธตเนˆเธขเธงเธเธฑเธšเธเธฒเธฃเธžเธฑเธ’เธ™เธฒเน€เธ™เธทเน‰เธญเธ‡เธญเธเธเธฅเธตเธญเธฒเธฅเธ—เธตเนˆเน€เธžเธดเนˆเธกเธ‚เธถเน‰เธ™เนเธฅเธฐเธเธฒเธฃเธ„เธงเธšเธ„เธธเธกเธเธฒเธฃเธŠเธฑเธเธ—เธตเนˆเน„เธกเนˆเธ”เธตเธ—เธณเนƒเธซเน‰เธกเธตเธเธฒเธฃเนเธ™เธฐเธ™เธณเนƒเธซเน‰เธ—เธณเธเธฒเธฃเธœเนˆเธฒเธ•เธฑเธ”
เธเธฒเธฃเธ•เธฑเธ”เธชเธดเธ™เนƒเธˆเธ–เธนเธเธ—เธณเธ‚เธถเน‰เธ™เน€เธžเธทเนˆเธญเธ”เธณเน€เธ™เธดเธ™เธเธฒเธฃเธœเนˆเธฒเธ•เธฑเธ”เธ™เธณเธ—เธฒเธ‡เธ”เน‰เธงเธขเธฃเธฐเธšเธšเธ›เธฃเธฐเธชเธฒเธ—เน€เธžเธทเนˆเธญเธ•เธฑเธ”เธกเธงเธฅเธ—เธตเนˆเน€เธžเธดเนˆเธกเธ‚เธถเน‰เธ™เนƒเธ™เธชเธกเธญเธ‡เธชเนˆเธงเธ™เธซเธ™เน‰เธฒเธ‹เน‰เธฒเธขเนเธฅเธฐเธเธฒเธฃเธ•เธฑเธ”เธชเธกเธญเธ‡เธชเนˆเธงเธ™เธซเธ™เน‰เธฒเธšเธฒเธ‡เธชเนˆเธงเธ™เน‚เธ”เธขเนƒเธŠเน‰เธเธฒเธฃเธ•เธฃเธงเธˆเธ„เธฅเธทเนˆเธ™เน„เธŸเธŸเน‰เธฒเธชเธกเธญเธ‡เธฃเธฐเธซเธงเนˆเธฒเธ‡เธเธฒเธฃเธœเนˆเธฒเธ•เธฑเธ”
(intraoperative electroencephalogram - EEG), เธเธฒเธฃเธ—เธณเนเธœเธ™เธ—เธตเนˆเธ„เธญเธฃเนŒเธ•เธดเธ„เธญเธฅ (cortical mapping) เนเธฅเธฐเธเธฒเธฃเธ•เธฃเธงเธˆเธงเธฑเธ”เธจเธฑเธเธขเนŒเน„เธŸเธŸเน‰เธฒเธ—เธตเนˆเน€เธเธดเธ”เธˆเธฒเธเธเธฒเธฃเธเธฃเธฐเธ•เธธเน‰เธ™เธ›เธฃเธฐเธชเธฒเธ—เธฃเธฑเธšเธ„เธงเธฒเธกเธฃเธนเน‰เธชเธถเธ
 (somatosensory evoked potentials - SSEP)\n\nเธ•เธฑเธงเธญเธขเนˆเธฒเธ‡เธ—เธตเนˆเธชเนˆเธ‡เน„เธ›เธ•เธฃเธงเธˆเธ—เธฒเธ‡เธžเธขเธฒเธ˜เธดเธงเธดเธ—เธขเธฒเนเธšเธšเนเธŠเนˆเนเธ‚เน‡เธ‡เนƒเธ™เธฃเธฐเธซเธงเนˆเธฒเธ‡เธเธฒเธฃเธœเนˆเธฒเธ•เธฑเธ”เธžเธšเธงเนˆเธฒเธกเธตเน€เธชเน‰เธ™เนƒเธขเน‚เธฃเน€เธ‹เธ™เธ˜เธฒเธฅ (Rosenthal fibers)
เนเธฅเธฐเธเธฒเธฃเธเธฅเธฒเธขเน€เธ›เน‡เธ™เธซเธดเธ™เธ›เธนเธ™เนเธšเธšเน€เธ›เน‡เธ™เธˆเธธเธ”เธ‹เธถเนˆเธ‡เธ„เธฒเธ”เธงเนˆเธฒเธˆเธฐเน€เธ›เน‡เธ™เน€เธ™เธทเน‰เธญเธ‡เธญเธเธเธฅเธตเธญเธฒเธฅ เธเธฒเธฃเธ›เธฃเธฐเน€เธกเธดเธ™เธ—เธฒเธ‡เธžเธขเธฒเธ˜เธดเธงเธดเธ—เธขเธฒเนเธšเธšเธ–เธฒเธงเธฃเน€เธœเธขเนƒเธซเน‰เน€เธซเน‡เธ™เน€เธ™เธทเน‰เธญเธ‡เธญเธเน„เธ‚เธกเธฑเธ™ (lipoma) เนเธฅเธฐเธ„เธงเธฒเธกเธœเธดเธ”เธ›เธเธ•เธดเธ‚เธญเธ‡เธ„เธญเธฃเนŒเธ•เธดเธ„เธญเธฅเนเธšเธšเน€เธ‰เธžเธฒเธฐเธˆเธธเธ”
(focal cortical dysplasia) เนเธšเธš Palmini Type IA เนƒเธ™เธชเธกเธญเธ‡เธ—เธตเนˆเธญเธขเธนเนˆเนƒเธเธฅเน‰เน€เธ„เธตเธขเธ‡ เธ„เธงเธฒเธกเธœเธดเธ”เธ›เธเธ•เธดเน€เธฅเน‡เธเธ™เน‰เธญเธขเธ‚เธญเธ‡เน‚เธ„เธฃเธ‡เธชเธฃเน‰เธฒเธ‡เธ„เธญเธฃเนŒเธ•เธดเธ„เธญเธฅเนเธฅเธฐเธเธฒเธฃเน€เธเธดเธ”เธเธฅเธตเน‚เธญเธ‹เธดเธช (gliosis)
เนƒเธ™เน€เธ™เธทเน‰เธญเธชเธกเธญเธ‡เธ‚เธฒเธงเธ—เธตเนˆเน€เธเธตเนˆเธขเธงเธ‚เน‰เธญเธ‡เธชเธฒเธกเธฒเธฃเธ–เน€เธซเน‡เธ™เน„เธ”เน‰เนƒเธ™เธ„เธฃเธฒเธšเธชเธตเธฎเธตเธกเธฒเน‚เธ—เธ‹เธดเธฅเธดเธ™เนเธฅเธฐเธญเธตเน‚เธญเธ‹เธดเธ™ (hematoxylin and eosin - H&E) เนเธฅเธฐเธ„เธฃเธฒเธšเธชเธตเน‚เธ›เธฃเธ•เธตเธ™เธเธฃเธ”เธเธฅเธตเธญเธฒเธฅเน„เธŸเธšเธฃเธดเธฅเธฅเธฒเธฃเธต (glial fibrillary acidic protein - GFAP)
เนเธฅเธฐเธเธฒเธฃเธขเน‰เธญเธกเธชเธตเน‚เธ›เธฃเธ•เธตเธ™เน€เธชเน‰เธ™เธ›เธฃเธฐเธชเธฒเธ— (neurofilament protein - NFP) เนƒเธ™เธšเธฃเธดเน€เธงเธ“เธ—เธตเนˆเน€เธเธดเธ”เธเธฅเธตเน‚เธญเธ‹เธดเธชเน„เธกเนˆเนเธชเธ”เธ‡เธซเธฅเธฑเธเธเธฒเธ™เธ‚เธญเธ‡เน€เธ‹เธฅเธฅเนŒเธ›เธฃเธฐเธชเธฒเธ—เธ—เธตเนˆเธœเธดเธ”เธฃเธนเธ› เน€เธ‹เธฅเธฅเนŒเธ›เธฃเธฐเธชเธฒเธ—เธ‚เธ™เธฒเธ”เนƒเธซเธเนˆ เธซเธฃเธทเธญเน€เธ‹เธฅเธฅเนŒเธฅเธนเธเน‚เธ›เนˆเธ‡ (เธฃเธนเธ›เธ—เธตเนˆ ).\n\n
เธเธฒเธฃเธ–เนˆเธฒเธขเธ เธฒเธžเธซเธฅเธฑเธ‡เธเธฒเธฃเธœเนˆเธฒเธ•เธฑเธ” (เธฃเธนเธ›เธ—เธตเนˆ ) เนเธชเธ”เธ‡เนƒเธซเน‰เน€เธซเน‡เธ™เธเธฒเธฃเธ•เธฑเธ”เธฃเธญเธขเน‚เธฃเธ„เธ—เธตเนˆเน€เธžเธดเนˆเธกเธ‚เธถเน‰เธ™เนƒเธเธฅเน‰เน€เธ„เธตเธขเธ‡เธ—เธฑเน‰เธ‡เธซเธกเธ”เนƒเธ™เธชเธกเธญเธ‡เธชเนˆเธงเธ™เธซเธ™เน‰เธฒเธ‹เน‰เธฒเธขเนเธฅเธฐเน„เธˆเธฃเธฑเธชเธ‹เธดเธ‡เธเธนเน€เธฅเธ• เธเธฒเธฃเธฅเธ”เธฅเธ‡เธญเธขเนˆเธฒเธ‡เธกเธฒเธเธ‚เธญเธ‡เธญเธฒเธเธฒเธฃเธšเธงเธกเธ™เน‰เธณเธ—เธตเนˆเน€เธเธดเธ”เธˆเธฒเธเธซเธฅเธญเธ”เน€เธฅเธทเธญเธ”เธ–เธนเธเธชเธฑเธ‡เน€เธเธ•เนƒเธ™เธ เธฒเธž
FLAIR เน€เธ™เธทเน‰เธญเธ‡เธญเธเน„เธ‚เธกเธฑเธ™เธ—เธตเนˆเน€เธชเน‰เธ™เธเธฅเธฒเธ‡เธชเธกเธญเธ‡เน„เธกเนˆเน€เธ›เธฅเธตเนˆเธขเธ™เนเธ›เธฅเธ‡\n\nเธเธฒเธฃเธŸเธทเน‰เธ™เธ•เธฑเธงเธซเธฅเธฑเธ‡เธเธฒเธฃเธ•เธฑเธ”เธฃเธงเธกเธ–เธถเธ‡เธญเธฒเธเธฒเธฃเน€เธชเธฃเธดเธกเนƒเธ™เธšเธฃเธดเน€เธงเธ“เธกเธญเน€เธ•เธญเธฃเนŒเธ‹เธดเธ™เน‚เธ”เธฃเธกเธฃเธฐเธ”เธฑเธšเธ›เธฒเธ™เธเธฅเธฒเธ‡เธฃเธงเธกเธ–เธถเธ‡เธญเธฒเธเธฒเธฃเธญเนˆเธญเธ™เนเธฃเธ‡เธ„เธฃเธถเนˆเธ‡เธ‹เธตเธ เธเธฒเธฃเธžเธนเธ”เธฅเนˆเธฒเธŠเน‰เธฒ เนเธฅเธฐเธเธฒเธฃเน€เธ›เธฅเธตเนˆเธขเธ™เนเธ›เธฅเธ‡เธ—เธฒเธ‡เธญเธฒเธฃเธกเธ“เนŒ
เธเธฒเธฃเน€เธ›เธฅเธตเนˆเธขเธ™เนเธ›เธฅเธ‡เน€เธซเธฅเนˆเธฒเธ™เธตเน‰เธ„เนˆเธญเธขเน† เธซเธฒเธขเน„เธ›เนเธฅเธฐเธžเธšเธงเนˆเธฒเธœเธนเน‰เธ›เนˆเธงเธขเธกเธตเธ„เธงเธฒเธกเธชเธกเธšเธนเธฃเธ“เนŒเธ—เธฒเธ‡เธฃเธฐเธšเธšเธ›เธฃเธฐเธชเธฒเธ—เนƒเธ™เธเธฒเธฃเธ•เธดเธ”เธ•เธฒเธกเธœเธฅเธ—เธตเนˆเธ„เธฅเธดเธ™เธดเธ เธเธฒเธฃเธ„เธงเธšเธ„เธธเธกเธเธฒเธฃเธŠเธฑเธเน€เธเธดเธ”เธ‚เธถเน‰เธ™เธ—เธฑเธ™เธ—เธตเธซเธฅเธฑเธ‡เธเธฒเธฃเธ•เธฑเธ” เธขเธฒเธ•เน‰เธฒเธ™เธเธฒเธฃเธŠเธฑเธเธ–เธนเธเนƒเธŠเน‰เธญเธขเนˆเธฒเธ‡เธ•เนˆเธญเน€เธ™เธทเนˆเธญเธ‡เนเธฅเธฐเธ„เนˆเธญเธขเน†
เธ–เธนเธเธ–เธญเธ”เธญเธญเธเนƒเธ™เน€เธ”เธทเธญเธ™เธ•เนˆเธญเธกเธฒเน‚เธ”เธขเน„เธกเนˆเธกเธตเธเธฒเธฃเธเธฅเธฑเธšเธกเธฒเน€เธ›เน‡เธ™เธ‹เน‰เธณ เธœเธนเน‰เธ›เนˆเธงเธขเน„เธกเนˆเธกเธตเธเธฒเธฃเธŠเธฑเธเน€เธ›เน‡เธ™เน€เธงเธฅเธฒ 3 เธ›เธตเธซเธฅเธฑเธ‡เธเธฒเธฃเธ•เธฑเธ” เธเธฒเธฃเธ–เนˆเธฒเธขเธ เธฒเธžเธ•เธดเธ”เธ•เธฒเธกเธœเธฅ 18 เน€เธ”เธทเธญเธ™เธžเธšเธเธฒเธฃเน€เธ›เธฅเธตเนˆเธขเธ™เนเธ›เธฅเธ‡ T2/FLAIR เธ—เธตเนˆเธ„เธ‡เธ—เธตเนˆเธžเธฃเน‰เธญเธกเธเธฑเธšเธšเธฃเธดเน€เธงเธ“เน€เธฅเน‡เธ เน† 


<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
1. เธญเธฒเธขเธธ: 43 เธ›เธต\n
2. เน€เธžเธจ: เธŠเธฒเธข\n
3. เธ™เน‰เธณเธซเธ™เธฑเธ: เน„เธกเนˆเธฃเธฐเธšเธธ\n
4. เธชเนˆเธงเธ™เธชเธนเธ‡: เน„เธกเนˆเธฃเธฐเธšเธธ\n
5. เธญเธฒเธเธฒเธฃเธซเธฅเธฑเธ: เธเธฒเธฃเธŠเธฑเธเธ—เธตเนˆเน„เธกเนˆเธชเธฒเธกเธฒเธฃเธ–เธ„เธงเธšเธ„เธธเธกเน„เธ”เน‰\n
6. เธญเธฒเธเธฒเธฃเนเธฅเธฐเธชเธฑเธเธเธฒเธ“: เธฃเธนเน‰เธชเธถเธเธฃเน‰เธญเธ™เธงเธนเธšเธงเธฒเธš, เธญเธฒเธเธฒเธฃเธ—เธฒเธ‡เธ›เธฃเธฐเธชเธฒเธ—เธชเธฑเธกเธœเธฑเธช, เธเธฒเธฃเน€เธ„เธฅเธทเนˆเธญเธ™เน„เธซเธงเธ‚เธญเธ‡เธเธฅเน‰เธฒเธกเน€เธ™เธทเน‰เธญเธ—เธตเนˆเธกเธตเธˆเธธเธ”เธจเธนเธ™เธขเนŒเธเธฅเธฒเธ‡เธชเนˆเธงเธ™เนƒเธซเธเนˆเธ—เธฒเธ‡เธ”เน‰เธฒเธ™เธ‚เธงเธฒ\n
7. เธ›เธฃเธฐเธงเธฑเธ•เธดเธเธฒเธฃเธฃเธฑเธเธฉเธฒ: เธเธฒเธฃเธˆเธฑเธ”เธเธฒเธฃเธ—เธฒเธ‡เธเธฒเธฃเนเธžเธ—เธขเนŒเธฅเน‰เธกเน€เธซเธฅเธงเนƒเธ™เธเธฒเธฃเธ„เธงเธšเธ„เธธเธกเธเธฒเธฃเธŠเธฑเธ\n
8. เธขเธฒเธ—เธตเนˆเนƒเธŠเน‰เนƒเธ™เธ›เธฑเธˆเธˆเธธเธšเธฑเธ™: เธขเธฒเธ•เน‰เธฒเธ™เธเธฒเธฃเธŠเธฑเธ\n9. เธœเธฅเธเธฒเธฃเธ•เธฃเธงเธˆเธ—เธฒเธ‡เธซเน‰เธญเธ‡เธ›เธเธดเธšเธฑเธ•เธดเธเธฒเธฃ: เน„เธกเนˆเธฃเธฐเธšเธธ\n
10. เธœเธฅเธเธฒเธฃเธ•เธฃเธงเธˆเธ เธฒเธž: MRI เนเธชเธ”เธ‡เน€เธ™เธทเน‰เธญเธ‡เธญเธเน„เธ‚เธกเธฑเธ™เธ‚เธ™เธฒเธ”เนƒเธซเธเนˆเธ—เธตเนˆเน€เธชเน‰เธ™เธเธฅเธฒเธ‡เธชเธกเธญเธ‡, เธเธฒเธฃเธžเธฑเธ’เธ™เธฒเน„เธกเนˆเธชเธกเธšเธนเธฃเธ“เนŒเธ‚เธญเธ‡เธ„เธญเธฃเนŒเธ›เธฑเธชเธ„เธฒเน‚เธฅเธ‹เธฑเธกเธšเธฒเธ‡เธชเนˆเธงเธ™, เธฃเธญเธขเน‚เธฃเธ„เธ—เธตเนˆเธญเธขเธนเนˆเนƒเธเธฅเน‰เน€เธ„เธตเธขเธ‡เนƒเธ™เธชเธกเธญเธ‡เธชเนˆเธงเธ™เธซเธ™เน‰เธฒเธ‹เน‰เธฒเธขเธ—เธตเนˆเธ„เธฒเธ”เธงเนˆเธฒเธˆเธฐเน€เธ›เน‡เธ™เน€เธ™เธทเน‰เธญเธ‡เธญเธเธเธฅเธตเธญเธฒเธฅ\n
11. เธญเธฒเธเธฒเธฃเนเธžเน‰: เน„เธกเนˆเธฃเธฐเธšเธธ\n
12. เธญเธฒเธเธฒเธฃเนเธžเน‰เธขเธฒ: เน„เธกเนˆเธฃเธฐเธšเธธ\n
เธเธฒเธฃเธœเนˆเธฒเธ•เธฑเธ”เธ™เธณเธ—เธฒเธ‡เธ”เน‰เธงเธขเธฃเธฐเธšเธšเธ›เธฃเธฐเธชเธฒเธ—เน€เธžเธทเนˆเธญเธ•เธฑเธ”เธกเธงเธฅเธ—เธตเนˆเน€เธžเธดเนˆเธกเธ‚เธถเน‰เธ™เนƒเธ™เธชเธกเธญเธ‡เธชเนˆเธงเธ™เธซเธ™เน‰เธฒเธ‹เน‰เธฒเธขเนเธฅเธฐเธเธฒเธฃเธ•เธฑเธ”เธชเธกเธญเธ‡เธชเนˆเธงเธ™เธซเธ™เน‰เธฒเธšเธฒเธ‡เธชเนˆเธงเธ™เน„เธ”เน‰เธ–เธนเธเธ”เธณเน€เธ™เธดเธ™เธเธฒเธฃ
เนเธฅเธฐเธœเธฅเธเธฒเธฃเธ•เธฃเธงเธˆเธ—เธฒเธ‡เธžเธขเธฒเธ˜เธดเธงเธดเธ—เธขเธฒเน€เธœเธขเนƒเธซเน‰เน€เธซเน‡เธ™เธงเนˆเธฒเน€เธ›เน‡เธ™เน€เธ™เธทเน‰เธญเธ‡เธญเธเน„เธ‚เธกเธฑเธ™เนเธฅเธฐเธ„เธงเธฒเธกเธœเธดเธ”เธ›เธเธ•เธดเธ‚เธญเธ‡เธ„เธญเธฃเนŒเธ•เธดเธ„เธญเธฅเนเธšเธšเน€เธ‰เธžเธฒเธฐเธˆเธธเธ” (focal cortical dysplasia) เนเธšเธš Palmini Type IA
เนƒเธ™เธชเธกเธญเธ‡เธ—เธตเนˆเธญเธขเธนเนˆเนƒเธเธฅเน‰เน€เธ„เธตเธขเธ‡ เธเธฒเธฃเธŸเธทเน‰เธ™เธ•เธฑเธงเธซเธฅเธฑเธ‡เธเธฒเธฃเธœเนˆเธฒเธ•เธฑเธ”เธฃเธงเธกเธ–เธถเธ‡เธญเธฒเธเธฒเธฃเน€เธชเธฃเธดเธกเนƒเธ™เธšเธฃเธดเน€เธงเธ“เธกเธญเน€เธ•เธญเธฃเนŒเธ‹เธดเธ™เน‚เธ”เธฃเธกเธฃเธฐเธ”เธฑเธšเธ›เธฒเธ™เธเธฅเธฒเธ‡ เนเธ•เนˆเธเธฒเธฃเธ„เธงเธšเธ„เธธเธกเธเธฒเธฃเธŠเธฑเธเน€เธเธดเธ”เธ‚เธถเน‰เธ™เธ—เธฑเธ™เธ—เธตเธซเธฅเธฑเธ‡เธเธฒเธฃเธœเนˆเธฒเธ•เธฑเธ”เนเธฅเธฐเธœเธนเน‰เธ›เนˆเธงเธขเน„เธกเนˆเธกเธตเธเธฒเธฃเธŠเธฑเธเน€เธ›เน‡เธ™เน€เธงเธฅเธฒ
3 เธ›เธตเธซเธฅเธฑเธ‡เธเธฒเธฃเธœเนˆเธฒเธ•เธฑเธ” เธเธฒเธฃเธ–เนˆเธฒเธขเธ เธฒเธžเธ•เธดเธ”เธ•เธฒเธกเธœเธฅ 18 เน€เธ”เธทเธญเธ™เธžเธšเธเธฒเธฃเน€เธ›เธฅเธตเนˆเธขเธ™เนเธ›เธฅเธ‡ T2/FLAIR เธ—เธตเนˆเธ„เธ‡เธ—เธตเนˆเธžเธฃเน‰เธญเธกเธเธฑเธšเธšเธฃเธดเน€เธงเธ“เน€เธฅเน‡เธ เน† เธ—เธตเนˆเน€เธžเธดเนˆเธกเธ‚เธถเน‰เธ™เธ‚เธญเธ‡เธเธฒเธฃเน€เธžเธดเนˆเธกเธ‚เธถเน‰เธ™เนƒเธเธฅเน‰เน€เธ„เธตเธขเธ‡เธ—เธตเนˆเน„เธกเนˆเน€เธ›เธฅเธตเนˆเธขเธ™เนเธ›เธฅเธ‡.

How to use


from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch

model_id = "EIRTHAIMED/Llama-3.1-EIRAI-8B"

nf4_config = BitsAndBytesConfig(
   load_in_4bit=True,
   bnb_4bit_quant_type="nf4",
   bnb_4bit_use_double_quant=True,
   bnb_4bit_compute_dtype=torch.bfloat16
)

# Load the base model
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    # quantization_config=nf4_config, # uncomment this line for 4 bit loading
    device_map="auto",
    attn_implementation="flash_attention_2"
)

messages = [
    {"role": "system", "content": "You are an expert medical assistant named EIR , developed by EIR Thai Medical LLM. You are to be a helpful, respectful, and honest assistant."},
    {"role": "user", "content": "เธเธฒเธฃเนƒเธŠเน‰ clinical tracer เธกเธตเธšเธ—เธšเธฒเธ—เธญเธขเนˆเธฒเธ‡เน„เธฃเนƒเธ™เธเธฒเธฃเธžเธฑเธ’เธ™เธฒเธ„เธธเธ“เธ เธฒเธžเธเธฒเธฃเธ”เธนเนเธฅเธœเธนเน‰เธ›เนˆเธงเธข?"}
]

input = tokenizer.apply_chat_template(
    messages,
    tokenize = True,
    add_generation_prompt = True, # Must add for generation
    return_tensors = "pt",
).to("cuda")


from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
_ = model.generate(input, streamer = text_streamer, max_new_tokens = 1500, do_sample=True, temperature=0.01, top_k=100, top_p=0.95) 

@article{EirAI,
    title={Eir: Thai Medical Large Language Models}, 
    author={Yutthakorn Thiprak and Rungtam Ngodngamthaweesuk and Songtam Ngodngamtaweesuk, MD},
    year={2024},
    journal={arXiv preprint arXiv:2409.08523},
    url={https://arxiv.org/abs/2409.08523}
}

Thank you very much Asst.Prof.Dr. Ekapol Chuangsuwanich and Praj Bhargava @Meta Research Engineer, for your valuable endorsement of our preprint paper on arXiv.

Thank you Draft Reviewer Report Kullawat Chaowanawatee and Dr. Jakapan Suaboot from Prince of Songkla University, Phuket Campus
Draft Industry Reviewer Report Mr. Piyawat Maneenual ,Assistant IT Manager ,Thonburi Rajyindee Hospital

Downloads last month
271
GGUF
Model size
8.03B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for QuantFactory/Llama-3.1-EIRAI-8B-GGUF

Quantized
(186)
this model