metadata
license: other
license_name: deepseek
license_link: LICENSE
QuantFactory/deepseek-coder-7b-instruct-v1.5-GGUF
This is quantized version of deepseek-ai/deepseek-coder-7b-instruct-v1.5 created using llama.cpp
Original Model Card
[🏠Homepage] | [🤖 Chat with DeepSeek Coder] | [Discord] | [Wechat(微信)]
1. Introduction of Deepseek-Coder-7B-Instruct v1.5
Deepseek-Coder-7B-Instruct-v1.5 is continue pre-trained from Deepseek-LLM 7B on 2T tokens by employing a window size of 4K and next token prediction objective, and then fine-tuned on 2B tokens of instruction data.
- Home Page: DeepSeek
- Repository: deepseek-ai/deepseek-coder
- Chat With DeepSeek Coder: DeepSeek-Coder
2. Evaluation Results
3. How to Use
Here give some examples of how to use our model.
Chat Model Inference
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5", trust_remote_code=True).cuda()
messages=[
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
4. License
This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.
See the LICENSE-MODEL for more details.
5. Contact
If you have any questions, please raise an issue or contact us at service@deepseek.com.