aashish1904's picture
Upload README.md with huggingface_hub
00bb5a3 verified
metadata
license: other
license_name: qwen
language:
  - th
  - en
library_name: transformers
pipeline_tag: text-generation
tags:
  - openthaigpt
  - qwen

QuantFactory Banner

QuantFactory/openthaigpt1.5-7b-instruct-GGUF

This is quantized version of openthaigpt/openthaigpt1.5-7b-instruct created using llama.cpp

Original Model Card

🇹🇭 OpenThaiGPT 7b 1.5 Instruct

OpenThaiGPT
More Info

🇹🇭 OpenThaiGPT 7b Version 1.5 is an advanced 7-billion-parameter Thai language chat model based on Qwen v2.5 released on September 30, 2024. It has been specifically fine-tuned on over 2,000,000 Thai instruction pairs and is capable of answering Thai-specific domain questions.

Online Demo:

https://demo72b.aieat.or.th/

Example code for API Calling

https://github.com/OpenThaiGPT/openthaigpt1.5_api_examples

Highlights

  • State-of-the-art Thai language LLM, achieving the highest average scores across various Thai language exams compared to other open-source Thai LLMs.
  • Multi-turn conversation support for extended dialogues.
  • Retrieval Augmented Generation (RAG) compatibility for enhanced response generation.
  • Impressive context handling: Processes up to 131,072 tokens of input and generates up to 8,192 tokens, enabling detailed and complex interactions.
  • Tool calling support: Enables users to efficiently call various functions through intelligent responses.

Benchmark on OpenThaiGPT Eval

** Please take a look at openthaigpt/openthaigpt1.5-7b-instruct for this model's evaluation result.

Exam names scb10x/llama-3-typhoon-v1.5x-8b-instruct meta-llama/Llama-3.1-7B-Instruct Qwen/Qwen2.5-7B-Instruct_stat openthaigpt/openthaigpt1.5-7b
01_a_level 46.67% 47.50% 58.33% 60.00%
02_tgat 32.00% 36.00% 32.00% 36.00%
03_tpat1 52.50% 55.00% 57.50% 57.50%
04_investment_consult 56.00% 48.00% 68.00% 76.00%
05_facebook_beleble_th_200 78.00% 73.00% 79.00% 81.00%
06_xcopa_th_200 79.50% 69.00% 80.50% 81.00%
07_xnli2.0_th_200 56.50% 55.00% 53.00% 54.50%
08_onet_m3_thai 48.00% 32.00% 72.00% 64.00%
09_onet_m3_social 75.00% 50.00% 90.00% 80.00%
10_onet_m3_math 25.00% 18.75% 31.25% 31.25%
11_onet_m3_science 46.15% 42.31% 46.15% 46.15%
12_onet_m3_english 70.00% 76.67% 86.67% 83.33%
13_onet_m6_thai 47.69% 29.23% 46.15% 53.85%
14_onet_m6_math 29.41% 17.65% 29.41% 29.41%
15_onet_m6_social 50.91% 43.64% 56.36% 58.18%
16_onet_m6_science 42.86% 32.14% 57.14% 57.14%
17_onet_m6_english 65.38% 71.15% 78.85% 80.77%
Micro Average 60.65% 55.60% 64.41% 65.78%

Thai language multiple choice exams, Test on unseen test set, Zero-shot learning. Benchmark source code and exams information: https://github.com/OpenThaiGPT/openthaigpt_eval

(Updated on: 30 September 2024)

Benchmark on scb10x/thai_exam

Models Thai Exam (Acc)
api/claude-3-5-sonnet-20240620 69.2
openthaigpt/openthaigpt1.5-72b-instruct* 64.07
api/gpt-4o-2024-05-13 63.89
hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4 63.54
Qwen/Qwen2-72B-Instruct 58.23
meta-llama/Meta-Llama-3.1-70B-Instruct 58.23
scb10x/llama-3-typhoon-v1.5x-70b-instruct 58.76
Qwen/Qwen2.5-14B-Instruct 57.35
api/gpt-4o-mini-2024-07-18 54.51
openthaigpt/openthaigpt1.5-7b-instruct* 52.04
SeaLLMs/SeaLLMs-v3-7B-Chat 51.33
openthaigpt/openthaigpt-1.0.0-70b-chat 50.09

* Evaluated by OpenThaiGPT team using scb10x/thai_exam.

Licenses

  • Built with Qwen
  • Qwen License: Allow Research and Commercial uses but if your user base exceeds 100 million monthly active users, you need to negotiate a separate commercial license. Please see LICENSE file for more information.

Sponsors

Supports

Prompt Format

Prompt format is based on ChatML.

<|im_start|>system\n{sytem_prompt}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n

System prompt:

คุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์

Examples

Single Turn Conversation Example

<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n

Single Turn Conversation with Context (RAG) Example

<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร เป็นเมืองหลวง นครและมหานครที่มีประชากรมากที่สุดของประเทศไทย กรุงเทพมหานครมีพื้นที่ทั้งหมด 1,568.737 ตร.กม. มีประชากรตามทะเบียนราษฎรกว่า 8 ล้านคน\nกรุงเทพมหานครมีพื้นที่เท่าไร่<|im_end|>\n<|im_start|>assistant\n

Multi Turn Conversation Example

First turn
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n
Second turn
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\nสวัสดีครับ ยินดีต้อนรับครับ คุณต้องการให้ฉันช่วยอะไรครับ?<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร ชื่อเต็มยาวๆคืออะไร<|im_end|>\n<|im_start|>assistant\n
Result
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\nสวัสดีครับ ยินดีต้อนรับครับ คุณต้องการให้ฉันช่วยอะไรครับ?<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร ชื่อเต็มยาวๆคืออะไร<|im_end|>\n<|im_start|>assistant\nชื่อเต็มของกรุงเทพมหานครคือ \"กรุงเทพมหานคร อมรรัตนโกสินทร์ มหินทรายุธยา มหาดิลกภพ นพรัตนราชธานีบูรีรมย์ อุดมราชนิเวศน์มหาสถาน อมรพิมานอวตารสถิต สักกะทัตติยวิษณุกรรมประสิทธิ์\"

How to use

Free API Service (hosted by Siam.Ai and Float16.cloud)

Siam.AI

curl https://api.aieat.or.th/v1/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer dummy" \
  -d '{
    "model": ".",
    "prompt": "<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nกรุงเทพมหานครคืออะไร<|im_end|>\n<|im_start|>assistant\n",
    "max_tokens": 512,
    "temperature": 0.7,
    "top_p": 0.8,
    "top_k": 40,
    "stop": ["<|im_end|>"]
  }'

Float16

curl -X POST https://api.float16.cloud/dedicate/78y8fJLuzE/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer float16-AG0F8yNce5s1DiXm1ujcNrTaZquEdaikLwhZBRhyZQNeS7Dv0X" \
  -d '{
    "model": "openthaigpt/openthaigpt1.5-7b-instruct",
    "messages": [
      {
        "role": "system",
        "content": "คุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์"
      },
      {
        "role": "user",
        "content": "สวัสดี"
      }
    ]
   }'

OpenAI Client Library (Hosted by VLLM, please see below.)

import openai

# Configure OpenAI client to use vLLM server
openai.api_base = "http://127.0.0.1:8000/v1"
openai.api_key = "dummy"  # vLLM doesn't require a real API key

prompt = "<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nกรุงเทพมหานครคืออะไร<|im_end|>\n<|im_start|>assistant\n"

try:
    response = openai.Completion.create(
        model=".",  # Specify the model you're using with vLLM
        prompt=prompt,
        max_tokens=512,
        temperature=0.7,
        top_p=0.8,
        top_k=40,
        stop=["<|im_end|>"]
    )
    print("Generated Text:", response.choices[0].text)
except Exception as e:
    print("Error:", str(e))

Huggingface

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "openthaigpt/openthaigpt1.5-72b-instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "ประเทศไทยคืออะไร"
messages = [
    {"role": "system", "content": "คุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์"},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

vLLM

  1. Install VLLM (https://github.com/vllm-project/vllm)

  2. Run server

vllm serve openthaigpt/openthaigpt1.5-72b-instruct --tensor-parallel-size 4
  • Note, change --tensor-parallel-size 4 to the amount of available GPU cards.
  1. Run inference (CURL example)
curl -X POST 'http://127.0.0.1:8000/v1/completions' \
-H 'Content-Type: application/json' \
-d '{
  "model": ".",
  "prompt": "<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n",
  "max_tokens": 512,
  "temperature": 0.7,
  "top_p": 0.8,
  "top_k": 40,
  "stop": ["<|im_end|>"]
}'

Processing Long Texts

The current config.json is set for context length up to 32,768 tokens. To handle extensive inputs exceeding 32,768 tokens, we utilize YaRN, a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.

For supported frameworks, you could add the following to config.json to enable YaRN:

{
  ...
  "rope_scaling": {
    "factor": 4.0,
    "original_max_position_embeddings": 32768,
    "type": "yarn"
  }
}

Tool Calling

The Tool Calling feature in OpenThaiGPT 1.5 enables users to efficiently call various functions through intelligent responses. This includes making external API calls to retrieve real-time data, such as current temperature information, or predicting future data simply by submitting a query. For example, a user can ask OpenThaiGPT, “What is the current temperature in San Francisco?” and the AI will execute a pre-defined function to provide an immediate response without the need for additional coding. This feature also allows for broader applications with external data sources, including the ability to call APIs for services such as weather updates, stock market information, or data from within the user’s own system.

Example:

import openai

def get_temperature(location, date=None, unit="celsius"):
    """Get temperature for a location (current or specific date)."""
    if date:
        return {"temperature": 25.9, "location": location, "date": date, "unit": unit}
    return {"temperature": 26.1, "location": location, "unit": unit}

tools = [
    {
        "name": "get_temperature",
        "description": "Get temperature for a location (current or by date).",
        "parameters": {
            "location": "string", "date": "string (optional)", "unit": "enum [celsius, fahrenheit]"
        },
    }
]

messages = [{"role": "user", "content": "อุณหภูมิที่ San Francisco วันนี้ีและพรุ้่งนี้คือเท่าไร่?"}]

# Simulated response flow using OpenThaiGPT Tool Calling
response = openai.ChatCompletion.create(
    model=".", messages=messages, tools=tools, temperature=0.7, max_tokens=512
)

print(response)

Full example: https://github.com/OpenThaiGPT/openthaigpt1.5_api_examples/blob/main/api_tool_calling_powered_by_siamai.py

GPU Memory Requirements

Number of Parameters FP 16 bits 8 bits (Quantized) 4 bits (Quantized) Example Graphic Card for 4 bits
7b 24 GB 12 GB 6 GB Nvidia RTX 4060 8GB
13b 48 GB 24 GB 12 GB Nvidia RTX 4070 16GB
72b 192 GB 96 GB 48 GB Nvidia RTX 4090 24GB x 2 cards

Authors

Disclaimer: Provided responses are not guaranteed.