|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
library_name: diffusers |
|
pipeline_tag: text-to-image |
|
--- |
|
<div align="center"> |
|
<h1>StoryMaker: Towards consistent characters in text-to-image generation</h1> |
|
|
|
<a href='https://arxiv.org/pdf/2409.12576'><img src='https://img.shields.io/badge/Technique-Report-red'></a> |
|
[![GitHub](https://img.shields.io/github/stars/RedAIGC/StoryMaker?style=social)](https://github.com/RedAIGC/StoryMaker) |
|
|
|
</div> |
|
StoryMaker is a personalization solution preserves not only the consistency of faces but also clothing, hairstyles and bodies in the multiple characters scene, enabling the potential to make a story consisting of a series of images. |
|
<p align="center"> |
|
<img src="assets/day1.png"> |
|
Visualization of generated images by StoryMaker. First three rows tell a story about a day in the life of a "office worker" and the last two rows tell a story about a movie of "Before Sunrise". |
|
</p> |
|
|
|
## Demos |
|
|
|
### Two Portraits Synthesis |
|
|
|
<p align="center"> |
|
<img src="assets/two.png"> |
|
</p> |
|
|
|
### Diverse application |
|
|
|
<p align="center"> |
|
<img src="assets/diverse.png"> |
|
</p> |
|
|
|
## Download |
|
|
|
You can directly download the model from [Huggingface](https://huggingface.co/RED-AIGC/StoryMaker). |
|
|
|
If you cannot access to Huggingface, you can use [hf-mirror](https://hf-mirror.com/) to download models. |
|
```python |
|
export HF_ENDPOINT=https://hf-mirror.com |
|
huggingface-cli download --resume-download RED-AIGC/StoryMaker --local-dir checkpoints --local-dir-use-symlinks False |
|
``` |
|
|
|
For face encoder, you need to manually download via this [URL](https://github.com/deepinsight/insightface/issues/1896#issuecomment-1023867304) to `models/buffalo_l` as the default link is invalid. Once you have prepared all models, the folder tree should be like: |
|
|
|
``` |
|
. |
|
βββ models |
|
βββ checkpoints/mask.bin |
|
βββ pipeline_sdxl_storymaker.py |
|
βββ README.md |
|
``` |
|
|
|
## Usage |
|
|
|
```python |
|
# !pip install opencv-python transformers accelerate insightface |
|
import diffusers |
|
|
|
import cv2 |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
|
|
from insightface.app import FaceAnalysis |
|
from pipeline_sdxl_storymaker import StableDiffusionXLStoryMakerPipeline |
|
|
|
# prepare 'buffalo_l' under ./models |
|
app = FaceAnalysis(name='buffalo_l', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) |
|
app.prepare(ctx_id=0, det_size=(640, 640)) |
|
|
|
# prepare models under ./checkpoints |
|
face_adapter = f'./checkpoints/mask.bin' |
|
image_encoder_path = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K' # from https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K |
|
|
|
base_model = 'huaquan/YamerMIX_v11' # from https://huggingface.co/huaquan/YamerMIX_v11 |
|
pipe = StableDiffusionXLStoryMakerPipeline.from_pretrained( |
|
base_model, |
|
torch_dtype=torch.float16 |
|
) |
|
pipe.cuda() |
|
|
|
# load adapter |
|
pipe.load_storymaker_adapter(image_encoder_path, face_adapter, scale=0.8, lora_scale=0.8) |
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
``` |
|
|
|
Then, you can customized your own images |
|
|
|
```python |
|
# load an image and mask |
|
face_image = Image.open("examples/ldh.png").convert('RGB') |
|
mask_image = Image.open("examples/ldh_mask.png").convert('RGB') |
|
|
|
face_info = app.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) |
|
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face |
|
|
|
prompt = "a person is taking a selfie, the person is wearing a red hat, and a volcano is in the distance" |
|
n_prompt = "bad quality, NSFW, low quality, ugly, disfigured, deformed" |
|
|
|
generator = torch.Generator(device='cuda').manual_seed(666) |
|
for i in range(4): |
|
output = pipe( |
|
image=image, mask_image=mask_image, face_info=face_info, |
|
prompt=prompt, |
|
negative_prompt=n_prompt, |
|
ip_adapter_scale=0.8, lora_scale=0.8, |
|
num_inference_steps=25, |
|
guidance_scale=7.5, |
|
height=1280, width=960, |
|
generator=generator, |
|
).images[0] |
|
output.save(f'examples/results/ldh666_new_{i}.jpg') |
|
``` |
|
|
|
|
|
## Acknowledgements |
|
- Our work is highly inspired by [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter) and [InstantID](https://github.com/instantX-research/InstantID). Thanks for their great works! |
|
- Thanks [Yamer](https://civitai.com/user/Yamer) for developing [YamerMIX](https://civitai.com/models/84040?modelVersionId=309729), we use it as base model in our demo. |
|
|