RMWeerasinghe's picture
Update README.md
797d9c3 verified
metadata
license: apache-2.0
base_model: google/long-t5-tglobal-base
tags:
  - summarization
  - generated_from_trainer
datasets:
  - gov_report_summarization_dataset
metrics:
  - rouge
model-index:
  - name: long-t5-tglobal-base-finetuned-govReport-4096
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: gov_report_summarization_dataset
          type: gov_report_summarization_dataset
          config: document
          split: validation
          args: document
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.0432
pipeline_tag: summarization

long-t5-tglobal-base-finetuned-govReport-4096

This model is a fine-tuned version of google/long-t5-tglobal-base on the gov_report_summarization_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4052
  • Rouge1: 0.0432
  • Rouge2: 0.0217
  • Rougel: 0.0378
  • Rougelsum: 0.0408

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
15.9484 0.99 31 2.7412 0.0382 0.0142 0.0319 0.0354
3.0143 1.98 62 1.7096 0.0385 0.0144 0.032 0.0355
2.1893 2.98 93 1.4976 0.0376 0.0138 0.0313 0.0347
1.6128 4.0 125 1.4406 0.041 0.0174 0.0354 0.0387
1.5438 4.99 156 1.4292 0.043 0.0203 0.0368 0.0408
1.5015 5.98 187 1.4220 0.0427 0.0205 0.0367 0.0405
1.4723 6.98 218 1.4071 0.0431 0.0215 0.0376 0.0408
1.4707 8.0 250 1.4089 0.0427 0.0212 0.0373 0.0405
1.4447 8.99 281 1.4046 0.0431 0.0216 0.0379 0.0408
1.4884 9.92 310 1.4052 0.0432 0.0217 0.0378 0.0408

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.1