RUPunct_small - самая маленькая модель из семейства RUPunct. Идеально подходит для несложных текстов и там, где требуется высокая скорость работы на CPU.

Код инференса:

from transformers import pipeline
from transformers import AutoTokenizer

pt = "RUPunct/RUPunct_small"

tk = AutoTokenizer.from_pretrained(pt, strip_accents=False, add_prefix_space=True)
classifier = pipeline("ner", model=pt, tokenizer=tk, aggregation_strategy="first")


def process_token(token, label):
    if label == "LOWER_O":
        return token
    if label == "LOWER_PERIOD":
        return token + "."
    if label == "LOWER_COMMA":
        return token + ","
    if label == "LOWER_QUESTION":
        return token + "?"
    if label == "LOWER_TIRE":
        return token + "—"
    if label == "LOWER_DVOETOCHIE":
        return token + ":"
    if label == "LOWER_VOSKL":
        return token + "!"
    if label == "LOWER_PERIODCOMMA":
        return token + ";"
    if label == "LOWER_DEFIS":
        return token + "-"
    if label == "LOWER_MNOGOTOCHIE":
        return token + "..."
    if label == "LOWER_QUESTIONVOSKL":
        return token + "?!"
    if label == "UPPER_O":
        return token.capitalize()
    if label == "UPPER_PERIOD":
        return token.capitalize() + "."
    if label == "UPPER_COMMA":
        return token.capitalize() + ","
    if label == "UPPER_QUESTION":
        return token.capitalize() + "?"
    if label == "UPPER_TIRE":
        return token.capitalize() + " —"
    if label == "UPPER_DVOETOCHIE":
        return token.capitalize() + ":"
    if label == "UPPER_VOSKL":
        return token.capitalize() + "!"
    if label == "UPPER_PERIODCOMMA":
        return token.capitalize() + ";"
    if label == "UPPER_DEFIS":
        return token.capitalize() + "-"
    if label == "UPPER_MNOGOTOCHIE":
        return token.capitalize() + "..."
    if label == "UPPER_QUESTIONVOSKL":
        return token.capitalize() + "?!"
    if label == "UPPER_TOTAL_O":
        return token.upper()
    if label == "UPPER_TOTAL_PERIOD":
        return token.upper() + "."
    if label == "UPPER_TOTAL_COMMA":
        return token.upper() + ","
    if label == "UPPER_TOTAL_QUESTION":
        return token.upper() + "?"
    if label == "UPPER_TOTAL_TIRE":
        return token.upper() + " —"
    if label == "UPPER_TOTAL_DVOETOCHIE":
        return token.upper() + ":"
    if label == "UPPER_TOTAL_VOSKL":
        return token.upper() + "!"
    if label == "UPPER_TOTAL_PERIODCOMMA":
        return token.upper() + ";"
    if label == "UPPER_TOTAL_DEFIS":
        return token.upper() + "-"
    if label == "UPPER_TOTAL_MNOGOTOCHIE":
        return token.upper() + "..."
    if label == "UPPER_TOTAL_QUESTIONVOSKL":
        return token.upper() + "?!"

while 1:
    input_text = input(":> ")
    preds = classifier(input_text)
    output = ""
    for item in preds:
        output += " " + process_token(item['word'].strip(), item['entity_group'])
    print(">>>", output)
Downloads last month
155
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using RUPunct/RUPunct_small 1