|
import numpy as np
|
|
import torch
|
|
from torch import nn as nn
|
|
from torch.nn import functional as F
|
|
|
|
from basicsr.utils.registry import ARCH_REGISTRY
|
|
|
|
|
|
class DenseBlocksTemporalReduce(nn.Module):
|
|
"""A concatenation of 3 dense blocks with reduction in temporal dimension.
|
|
|
|
Note that the output temporal dimension is 6 fewer the input temporal
|
|
dimension, since there are 3 blocks.
|
|
|
|
Args:
|
|
num_feat (int): Number of channels in the blocks. Default: 64.
|
|
num_grow_ch (int): Growing factor of the dense blocks. Default: 32
|
|
adapt_official_weights (bool): Whether to adapt the weights
|
|
translated from the official implementation. Set to false if you
|
|
want to train from scratch. Default: False.
|
|
"""
|
|
|
|
def __init__(self, num_feat=64, num_grow_ch=32, adapt_official_weights=False):
|
|
super(DenseBlocksTemporalReduce, self).__init__()
|
|
if adapt_official_weights:
|
|
eps = 1e-3
|
|
momentum = 1e-3
|
|
else:
|
|
eps = 1e-05
|
|
momentum = 0.1
|
|
|
|
self.temporal_reduce1 = nn.Sequential(
|
|
nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
|
|
nn.Conv3d(num_feat, num_feat, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True),
|
|
nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
|
|
nn.Conv3d(num_feat, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
|
|
|
|
self.temporal_reduce2 = nn.Sequential(
|
|
nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
|
|
nn.Conv3d(
|
|
num_feat + num_grow_ch,
|
|
num_feat + num_grow_ch, (1, 1, 1),
|
|
stride=(1, 1, 1),
|
|
padding=(0, 0, 0),
|
|
bias=True), nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
|
|
nn.Conv3d(num_feat + num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
|
|
|
|
self.temporal_reduce3 = nn.Sequential(
|
|
nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
|
|
nn.Conv3d(
|
|
num_feat + 2 * num_grow_ch,
|
|
num_feat + 2 * num_grow_ch, (1, 1, 1),
|
|
stride=(1, 1, 1),
|
|
padding=(0, 0, 0),
|
|
bias=True), nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv3d(
|
|
num_feat + 2 * num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Args:
|
|
x (Tensor): Input tensor with shape (b, num_feat, t, h, w).
|
|
|
|
Returns:
|
|
Tensor: Output with shape (b, num_feat + num_grow_ch * 3, 1, h, w).
|
|
"""
|
|
x1 = self.temporal_reduce1(x)
|
|
x1 = torch.cat((x[:, :, 1:-1, :, :], x1), 1)
|
|
|
|
x2 = self.temporal_reduce2(x1)
|
|
x2 = torch.cat((x1[:, :, 1:-1, :, :], x2), 1)
|
|
|
|
x3 = self.temporal_reduce3(x2)
|
|
x3 = torch.cat((x2[:, :, 1:-1, :, :], x3), 1)
|
|
|
|
return x3
|
|
|
|
|
|
class DenseBlocks(nn.Module):
|
|
""" A concatenation of N dense blocks.
|
|
|
|
Args:
|
|
num_feat (int): Number of channels in the blocks. Default: 64.
|
|
num_grow_ch (int): Growing factor of the dense blocks. Default: 32.
|
|
num_block (int): Number of dense blocks. The values are:
|
|
DUF-S (16 layers): 3
|
|
DUF-M (18 layers): 9
|
|
DUF-L (52 layers): 21
|
|
adapt_official_weights (bool): Whether to adapt the weights
|
|
translated from the official implementation. Set to false if you
|
|
want to train from scratch. Default: False.
|
|
"""
|
|
|
|
def __init__(self, num_block, num_feat=64, num_grow_ch=16, adapt_official_weights=False):
|
|
super(DenseBlocks, self).__init__()
|
|
if adapt_official_weights:
|
|
eps = 1e-3
|
|
momentum = 1e-3
|
|
else:
|
|
eps = 1e-05
|
|
momentum = 0.1
|
|
|
|
self.dense_blocks = nn.ModuleList()
|
|
for i in range(0, num_block):
|
|
self.dense_blocks.append(
|
|
nn.Sequential(
|
|
nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
|
|
nn.Conv3d(
|
|
num_feat + i * num_grow_ch,
|
|
num_feat + i * num_grow_ch, (1, 1, 1),
|
|
stride=(1, 1, 1),
|
|
padding=(0, 0, 0),
|
|
bias=True), nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv3d(
|
|
num_feat + i * num_grow_ch,
|
|
num_grow_ch, (3, 3, 3),
|
|
stride=(1, 1, 1),
|
|
padding=(1, 1, 1),
|
|
bias=True)))
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Args:
|
|
x (Tensor): Input tensor with shape (b, num_feat, t, h, w).
|
|
|
|
Returns:
|
|
Tensor: Output with shape
|
|
(b, num_feat + num_block * num_grow_ch, t, h, w).
|
|
"""
|
|
for i in range(0, len(self.dense_blocks)):
|
|
y = self.dense_blocks[i](x)
|
|
x = torch.cat((x, y), 1)
|
|
return x
|
|
|
|
|
|
class DynamicUpsamplingFilter(nn.Module):
|
|
"""Dynamic upsampling filter used in DUF.
|
|
|
|
Ref: https://github.com/yhjo09/VSR-DUF.
|
|
It only supports input with 3 channels. And it applies the same filters
|
|
to 3 channels.
|
|
|
|
Args:
|
|
filter_size (tuple): Filter size of generated filters.
|
|
The shape is (kh, kw). Default: (5, 5).
|
|
"""
|
|
|
|
def __init__(self, filter_size=(5, 5)):
|
|
super(DynamicUpsamplingFilter, self).__init__()
|
|
if not isinstance(filter_size, tuple):
|
|
raise TypeError('The type of filter_size must be tuple, ' f'but got type{filter_size}')
|
|
if len(filter_size) != 2:
|
|
raise ValueError('The length of filter size must be 2, ' f'but got {len(filter_size)}.')
|
|
|
|
self.filter_size = filter_size
|
|
filter_prod = np.prod(filter_size)
|
|
expansion_filter = torch.eye(int(filter_prod)).view(filter_prod, 1, *filter_size)
|
|
self.expansion_filter = expansion_filter.repeat(3, 1, 1, 1)
|
|
|
|
def forward(self, x, filters):
|
|
"""Forward function for DynamicUpsamplingFilter.
|
|
|
|
Args:
|
|
x (Tensor): Input image with 3 channels. The shape is (n, 3, h, w).
|
|
filters (Tensor): Generated dynamic filters.
|
|
The shape is (n, filter_prod, upsampling_square, h, w).
|
|
filter_prod: prod of filter kenrel size, e.g., 1*5*5=25.
|
|
upsampling_square: similar to pixel shuffle,
|
|
upsampling_square = upsampling * upsampling
|
|
e.g., for x 4 upsampling, upsampling_square= 4*4 = 16
|
|
|
|
Returns:
|
|
Tensor: Filtered image with shape (n, 3*upsampling_square, h, w)
|
|
"""
|
|
n, filter_prod, upsampling_square, h, w = filters.size()
|
|
kh, kw = self.filter_size
|
|
expanded_input = F.conv2d(
|
|
x, self.expansion_filter.to(x), padding=(kh // 2, kw // 2), groups=3)
|
|
expanded_input = expanded_input.view(n, 3, filter_prod, h, w).permute(0, 3, 4, 1,
|
|
2)
|
|
filters = filters.permute(0, 3, 4, 1, 2)
|
|
out = torch.matmul(expanded_input, filters)
|
|
return out.permute(0, 3, 4, 1, 2).view(n, 3 * upsampling_square, h, w)
|
|
|
|
|
|
@ARCH_REGISTRY.register()
|
|
class DUF(nn.Module):
|
|
"""Network architecture for DUF
|
|
|
|
Paper: Jo et.al. Deep Video Super-Resolution Network Using Dynamic
|
|
Upsampling Filters Without Explicit Motion Compensation, CVPR, 2018
|
|
Code reference:
|
|
https://github.com/yhjo09/VSR-DUF
|
|
For all the models below, 'adapt_official_weights' is only necessary when
|
|
loading the weights converted from the official TensorFlow weights.
|
|
Please set it to False if you are training the model from scratch.
|
|
|
|
There are three models with different model size: DUF16Layers, DUF28Layers,
|
|
and DUF52Layers. This class is the base class for these models.
|
|
|
|
Args:
|
|
scale (int): The upsampling factor. Default: 4.
|
|
num_layer (int): The number of layers. Default: 52.
|
|
adapt_official_weights_weights (bool): Whether to adapt the weights
|
|
translated from the official implementation. Set to false if you
|
|
want to train from scratch. Default: False.
|
|
"""
|
|
|
|
def __init__(self, scale=4, num_layer=52, adapt_official_weights=False):
|
|
super(DUF, self).__init__()
|
|
self.scale = scale
|
|
if adapt_official_weights:
|
|
eps = 1e-3
|
|
momentum = 1e-3
|
|
else:
|
|
eps = 1e-05
|
|
momentum = 0.1
|
|
|
|
self.conv3d1 = nn.Conv3d(3, 64, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)
|
|
self.dynamic_filter = DynamicUpsamplingFilter((5, 5))
|
|
|
|
if num_layer == 16:
|
|
num_block = 3
|
|
num_grow_ch = 32
|
|
elif num_layer == 28:
|
|
num_block = 9
|
|
num_grow_ch = 16
|
|
elif num_layer == 52:
|
|
num_block = 21
|
|
num_grow_ch = 16
|
|
else:
|
|
raise ValueError(f'Only supported (16, 28, 52) layers, but got {num_layer}.')
|
|
|
|
self.dense_block1 = DenseBlocks(
|
|
num_block=num_block, num_feat=64, num_grow_ch=num_grow_ch,
|
|
adapt_official_weights=adapt_official_weights)
|
|
self.dense_block2 = DenseBlocksTemporalReduce(
|
|
64 + num_grow_ch * num_block, num_grow_ch, adapt_official_weights=adapt_official_weights)
|
|
channels = 64 + num_grow_ch * num_block + num_grow_ch * 3
|
|
self.bn3d2 = nn.BatchNorm3d(channels, eps=eps, momentum=momentum)
|
|
self.conv3d2 = nn.Conv3d(channels, 256, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)
|
|
|
|
self.conv3d_r1 = nn.Conv3d(256, 256, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
|
|
self.conv3d_r2 = nn.Conv3d(256, 3 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
|
|
|
|
self.conv3d_f1 = nn.Conv3d(256, 512, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
|
|
self.conv3d_f2 = nn.Conv3d(
|
|
512, 1 * 5 * 5 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Args:
|
|
x (Tensor): Input with shape (b, 7, c, h, w)
|
|
|
|
Returns:
|
|
Tensor: Output with shape (b, 1, h * scale, w * scale)
|
|
"""
|
|
num_batches, num_imgs, _, h, w = x.size()
|
|
|
|
x = x.permute(0, 2, 1, 3, 4)
|
|
x_center = x[:, :, num_imgs // 2, :, :]
|
|
|
|
x = self.conv3d1(x)
|
|
x = self.dense_block1(x)
|
|
x = self.dense_block2(x)
|
|
x = F.relu(self.bn3d2(x), inplace=True)
|
|
x = F.relu(self.conv3d2(x), inplace=True)
|
|
|
|
|
|
res = self.conv3d_r2(F.relu(self.conv3d_r1(x), inplace=True))
|
|
|
|
|
|
filter_ = self.conv3d_f2(F.relu(self.conv3d_f1(x), inplace=True))
|
|
filter_ = F.softmax(filter_.view(num_batches, 25, self.scale**2, h, w), dim=1)
|
|
|
|
|
|
out = self.dynamic_filter(x_center, filter_)
|
|
out += res.squeeze_(2)
|
|
out = F.pixel_shuffle(out, self.scale)
|
|
|
|
return out
|
|
|