|
import os
|
|
import torch
|
|
from collections import OrderedDict
|
|
from torch import nn as nn
|
|
from torchvision.models import vgg as vgg
|
|
|
|
from basicsr.utils.registry import ARCH_REGISTRY
|
|
|
|
VGG_PRETRAIN_PATH = 'experiments/pretrained_models/vgg19-dcbb9e9d.pth'
|
|
NAMES = {
|
|
'vgg11': [
|
|
'conv1_1', 'relu1_1', 'pool1', 'conv2_1', 'relu2_1', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2',
|
|
'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2',
|
|
'pool5'
|
|
],
|
|
'vgg13': [
|
|
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
|
|
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4',
|
|
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'pool5'
|
|
],
|
|
'vgg16': [
|
|
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
|
|
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2',
|
|
'relu4_2', 'conv4_3', 'relu4_3', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3',
|
|
'pool5'
|
|
],
|
|
'vgg19': [
|
|
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
|
|
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3', 'conv4_1',
|
|
'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4', 'conv5_1', 'relu5_1',
|
|
'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4', 'pool5'
|
|
]
|
|
}
|
|
|
|
|
|
def insert_bn(names):
|
|
"""Insert bn layer after each conv.
|
|
|
|
Args:
|
|
names (list): The list of layer names.
|
|
|
|
Returns:
|
|
list: The list of layer names with bn layers.
|
|
"""
|
|
names_bn = []
|
|
for name in names:
|
|
names_bn.append(name)
|
|
if 'conv' in name:
|
|
position = name.replace('conv', '')
|
|
names_bn.append('bn' + position)
|
|
return names_bn
|
|
|
|
|
|
@ARCH_REGISTRY.register()
|
|
class VGGFeatureExtractor(nn.Module):
|
|
"""VGG network for feature extraction.
|
|
|
|
In this implementation, we allow users to choose whether use normalization
|
|
in the input feature and the type of vgg network. Note that the pretrained
|
|
path must fit the vgg type.
|
|
|
|
Args:
|
|
layer_name_list (list[str]): Forward function returns the corresponding
|
|
features according to the layer_name_list.
|
|
Example: {'relu1_1', 'relu2_1', 'relu3_1'}.
|
|
vgg_type (str): Set the type of vgg network. Default: 'vgg19'.
|
|
use_input_norm (bool): If True, normalize the input image. Importantly,
|
|
the input feature must in the range [0, 1]. Default: True.
|
|
range_norm (bool): If True, norm images with range [-1, 1] to [0, 1].
|
|
Default: False.
|
|
requires_grad (bool): If true, the parameters of VGG network will be
|
|
optimized. Default: False.
|
|
remove_pooling (bool): If true, the max pooling operations in VGG net
|
|
will be removed. Default: False.
|
|
pooling_stride (int): The stride of max pooling operation. Default: 2.
|
|
"""
|
|
|
|
def __init__(self,
|
|
layer_name_list,
|
|
vgg_type='vgg19',
|
|
use_input_norm=True,
|
|
range_norm=False,
|
|
requires_grad=False,
|
|
remove_pooling=False,
|
|
pooling_stride=2):
|
|
super(VGGFeatureExtractor, self).__init__()
|
|
|
|
self.layer_name_list = layer_name_list
|
|
self.use_input_norm = use_input_norm
|
|
self.range_norm = range_norm
|
|
|
|
self.names = NAMES[vgg_type.replace('_bn', '')]
|
|
if 'bn' in vgg_type:
|
|
self.names = insert_bn(self.names)
|
|
|
|
|
|
max_idx = 0
|
|
for v in layer_name_list:
|
|
idx = self.names.index(v)
|
|
if idx > max_idx:
|
|
max_idx = idx
|
|
|
|
if os.path.exists(VGG_PRETRAIN_PATH):
|
|
vgg_net = getattr(vgg, vgg_type)(pretrained=False)
|
|
state_dict = torch.load(VGG_PRETRAIN_PATH, map_location=lambda storage, loc: storage)
|
|
vgg_net.load_state_dict(state_dict)
|
|
else:
|
|
vgg_net = getattr(vgg, vgg_type)(pretrained=True)
|
|
|
|
features = vgg_net.features[:max_idx + 1]
|
|
|
|
modified_net = OrderedDict()
|
|
for k, v in zip(self.names, features):
|
|
if 'pool' in k:
|
|
|
|
if remove_pooling:
|
|
continue
|
|
else:
|
|
|
|
modified_net[k] = nn.MaxPool2d(kernel_size=2, stride=pooling_stride)
|
|
else:
|
|
modified_net[k] = v
|
|
|
|
self.vgg_net = nn.Sequential(modified_net)
|
|
|
|
if not requires_grad:
|
|
self.vgg_net.eval()
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
else:
|
|
self.vgg_net.train()
|
|
for param in self.parameters():
|
|
param.requires_grad = True
|
|
|
|
if self.use_input_norm:
|
|
|
|
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
|
|
|
|
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
|
|
|
|
def forward(self, x):
|
|
"""Forward function.
|
|
|
|
Args:
|
|
x (Tensor): Input tensor with shape (n, c, h, w).
|
|
|
|
Returns:
|
|
Tensor: Forward results.
|
|
"""
|
|
if self.range_norm:
|
|
x = (x + 1) / 2
|
|
if self.use_input_norm:
|
|
x = (x - self.mean) / self.std
|
|
|
|
output = {}
|
|
for key, layer in self.vgg_net._modules.items():
|
|
x = layer(x)
|
|
if key in self.layer_name_list:
|
|
output[key] = x.clone()
|
|
|
|
return output
|
|
|