|
import torch
|
|
from collections import Counter
|
|
from os import path as osp
|
|
from torch import distributed as dist
|
|
from tqdm import tqdm
|
|
|
|
from basicsr.metrics import calculate_metric
|
|
from basicsr.utils import get_root_logger, imwrite, tensor2img
|
|
from basicsr.utils.dist_util import get_dist_info
|
|
from basicsr.utils.registry import MODEL_REGISTRY
|
|
from .sr_model import SRModel
|
|
|
|
|
|
@MODEL_REGISTRY.register()
|
|
class VideoBaseModel(SRModel):
|
|
"""Base video SR model."""
|
|
|
|
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
|
|
dataset = dataloader.dataset
|
|
dataset_name = dataset.opt['name']
|
|
with_metrics = self.opt['val']['metrics'] is not None
|
|
|
|
|
|
|
|
|
|
|
|
if with_metrics and not hasattr(self, 'metric_results'):
|
|
self.metric_results = {}
|
|
num_frame_each_folder = Counter(dataset.data_info['folder'])
|
|
for folder, num_frame in num_frame_each_folder.items():
|
|
self.metric_results[folder] = torch.zeros(
|
|
num_frame, len(self.opt['val']['metrics']), dtype=torch.float32, device='cuda')
|
|
rank, world_size = get_dist_info()
|
|
if with_metrics:
|
|
for _, tensor in self.metric_results.items():
|
|
tensor.zero_()
|
|
|
|
if rank == 0:
|
|
pbar = tqdm(total=len(dataset), unit='frame')
|
|
for idx in range(rank, len(dataset), world_size):
|
|
val_data = dataset[idx]
|
|
val_data['lq'].unsqueeze_(0)
|
|
val_data['gt'].unsqueeze_(0)
|
|
folder = val_data['folder']
|
|
frame_idx, max_idx = val_data['idx'].split('/')
|
|
lq_path = val_data['lq_path']
|
|
|
|
self.feed_data(val_data)
|
|
self.test()
|
|
visuals = self.get_current_visuals()
|
|
result_img = tensor2img([visuals['result']])
|
|
if 'gt' in visuals:
|
|
gt_img = tensor2img([visuals['gt']])
|
|
del self.gt
|
|
|
|
|
|
del self.lq
|
|
del self.output
|
|
torch.cuda.empty_cache()
|
|
|
|
if save_img:
|
|
if self.opt['is_train']:
|
|
raise NotImplementedError('saving image is not supported during training.')
|
|
else:
|
|
if 'vimeo' in dataset_name.lower():
|
|
split_result = lq_path.split('/')
|
|
img_name = (f'{split_result[-3]}_{split_result[-2]}_' f'{split_result[-1].split(".")[0]}')
|
|
else:
|
|
img_name = osp.splitext(osp.basename(lq_path))[0]
|
|
|
|
if self.opt['val']['suffix']:
|
|
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder,
|
|
f'{img_name}_{self.opt["val"]["suffix"]}.png')
|
|
else:
|
|
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder,
|
|
f'{img_name}_{self.opt["name"]}.png')
|
|
imwrite(result_img, save_img_path)
|
|
|
|
if with_metrics:
|
|
|
|
for metric_idx, opt_ in enumerate(self.opt['val']['metrics'].values()):
|
|
metric_data = dict(img1=result_img, img2=gt_img)
|
|
result = calculate_metric(metric_data, opt_)
|
|
self.metric_results[folder][int(frame_idx), metric_idx] += result
|
|
|
|
|
|
if rank == 0:
|
|
for _ in range(world_size):
|
|
pbar.update(1)
|
|
pbar.set_description(f'Test {folder}:' f'{int(frame_idx) + world_size}/{max_idx}')
|
|
if rank == 0:
|
|
pbar.close()
|
|
|
|
if with_metrics:
|
|
if self.opt['dist']:
|
|
|
|
for _, tensor in self.metric_results.items():
|
|
dist.reduce(tensor, 0)
|
|
dist.barrier()
|
|
else:
|
|
pass
|
|
|
|
if rank == 0:
|
|
self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
|
|
|
|
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
|
|
logger = get_root_logger()
|
|
logger.warning('nondist_validation is not implemented. Run dist_validation.')
|
|
self.dist_validation(dataloader, current_iter, tb_logger, save_img)
|
|
|
|
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
|
|
|
|
|
|
|
|
|
|
|
|
metric_results_avg = {
|
|
folder: torch.mean(tensor, dim=0).cpu()
|
|
for (folder, tensor) in self.metric_results.items()
|
|
}
|
|
|
|
|
|
|
|
|
|
total_avg_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
|
|
for folder, tensor in metric_results_avg.items():
|
|
for idx, metric in enumerate(total_avg_results.keys()):
|
|
total_avg_results[metric] += metric_results_avg[folder][idx].item()
|
|
|
|
for metric in total_avg_results.keys():
|
|
total_avg_results[metric] /= len(metric_results_avg)
|
|
|
|
log_str = f'Validation {dataset_name}\n'
|
|
for metric_idx, (metric, value) in enumerate(total_avg_results.items()):
|
|
log_str += f'\t # {metric}: {value:.4f}'
|
|
for folder, tensor in metric_results_avg.items():
|
|
log_str += f'\t # {folder}: {tensor[metric_idx].item():.4f}'
|
|
log_str += '\n'
|
|
|
|
logger = get_root_logger()
|
|
logger.info(log_str)
|
|
if tb_logger:
|
|
for metric_idx, (metric, value) in enumerate(total_avg_results.items()):
|
|
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
|
|
for folder, tensor in metric_results_avg.items():
|
|
tb_logger.add_scalar(f'metrics/{metric}/{folder}', tensor[metric_idx].item(), current_iter)
|
|
|