|
from os import listdir, path
|
|
import numpy as np
|
|
import scipy, cv2, os, sys, argparse, audio
|
|
import json, subprocess, random, string
|
|
from tqdm import tqdm
|
|
from glob import glob
|
|
import torch, face_detection
|
|
from wav2lip_models import Wav2Lip
|
|
import platform
|
|
from face_parsing import init_parser, swap_regions
|
|
from basicsr.apply_sr import init_sr_model, enhance
|
|
|
|
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
|
|
|
|
parser.add_argument('--checkpoint_path', type=str,
|
|
help='Name of saved checkpoint to load weights from', required=True)
|
|
|
|
parser.add_argument('--segmentation_path', type=str,
|
|
help='Name of saved checkpoint of segmentation network', required=True)
|
|
|
|
parser.add_argument('--sr_path', type=str,
|
|
help='Name of saved checkpoint of super-resolution network', required=True)
|
|
|
|
parser.add_argument('--face', type=str,
|
|
help='Filepath of video/image that contains faces to use', required=True)
|
|
parser.add_argument('--audio', type=str,
|
|
help='Filepath of video/audio file to use as raw audio source', required=True)
|
|
parser.add_argument('--outfile', type=str, help='Video path to save result. See default for an e.g.',
|
|
default='results/result_voice.mp4')
|
|
|
|
|
|
parser.add_argument('--static', type=bool,
|
|
help='If True, then use only first video frame for inference', default=False)
|
|
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)',
|
|
default=25., required=False)
|
|
|
|
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0],
|
|
help='Padding (top, bottom, left, right). Please adjust to include chin at least')
|
|
|
|
parser.add_argument('--face_det_batch_size', type=int,
|
|
help='Batch size for face detection', default=16)
|
|
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip model(s)', default=128)
|
|
|
|
parser.add_argument('--resize_factor', default=1, type=int,
|
|
help='Reduce the resolution by this factor. Sometimes, best results are obtained at 480p or 720p')
|
|
|
|
parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1],
|
|
help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. '
|
|
'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width')
|
|
|
|
parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1],
|
|
help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.'
|
|
'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).')
|
|
|
|
parser.add_argument('--rotate', default=False, action='store_true',
|
|
help='Sometimes videos taken from a phone can be flipped 90deg. If true, will flip video right by 90deg.'
|
|
'Use if you get a flipped result, despite feeding a normal looking video')
|
|
|
|
parser.add_argument('--nosmooth', default=False, action='store_true',
|
|
help='Prevent smoothing face detections over a short temporal window')
|
|
parser.add_argument('--no_segmentation', default=False, action='store_true',
|
|
help='Prevent using face segmentation')
|
|
parser.add_argument('--no_sr', default=False, action='store_true',
|
|
help='Prevent using super resolution')
|
|
|
|
parser.add_argument('--save_frames', default=False, action='store_true',
|
|
help='Save each frame as an image. Use with caution')
|
|
parser.add_argument('--gt_path', type=str,
|
|
help='Where to store saved ground truth frames', required=False)
|
|
parser.add_argument('--pred_path', type=str,
|
|
help='Where to store frames produced by algorithm', required=False)
|
|
parser.add_argument('--save_as_video', action="store_true", default=False,
|
|
help='Whether to save frames as video', required=False)
|
|
parser.add_argument('--image_prefix', type=str, default="",
|
|
help='Prefix to save frames with', required=False)
|
|
|
|
args = parser.parse_args()
|
|
args.img_size = 96
|
|
|
|
if os.path.isfile(args.face) and args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:
|
|
args.static = True
|
|
|
|
def get_smoothened_boxes(boxes, T):
|
|
for i in range(len(boxes)):
|
|
if i + T > len(boxes):
|
|
window = boxes[len(boxes) - T:]
|
|
else:
|
|
window = boxes[i : i + T]
|
|
boxes[i] = np.mean(window, axis=0)
|
|
return boxes
|
|
|
|
def face_detect(images):
|
|
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
|
flip_input=False, device=device)
|
|
|
|
batch_size = args.face_det_batch_size
|
|
|
|
while 1:
|
|
predictions = []
|
|
try:
|
|
for i in range(0, len(images), batch_size):
|
|
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
|
|
except RuntimeError:
|
|
if batch_size == 1:
|
|
raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
|
|
batch_size //= 2
|
|
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
|
|
continue
|
|
break
|
|
|
|
results = []
|
|
pady1, pady2, padx1, padx2 = args.pads
|
|
for rect, image in zip(predictions, images):
|
|
if rect is None:
|
|
cv2.imwrite('temp/faulty_frame.jpg', image)
|
|
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
|
|
|
|
y1 = max(0, rect[1] - pady1)
|
|
y2 = min(image.shape[0], rect[3] + pady2)
|
|
x1 = max(0, rect[0] - padx1)
|
|
x2 = min(image.shape[1], rect[2] + padx2)
|
|
|
|
results.append([x1, y1, x2, y2])
|
|
|
|
boxes = np.array(results)
|
|
if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
|
|
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
|
|
|
|
del detector
|
|
return results
|
|
|
|
def datagen(mels):
|
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
|
|
|
"""
|
|
if args.box[0] == -1:
|
|
if not args.static:
|
|
face_det_results = face_detect(frames) # BGR2RGB for CNN face detection
|
|
else:
|
|
face_det_results = face_detect([frames[0]])
|
|
else:
|
|
print('Using the specified bounding box instead of face detection...')
|
|
y1, y2, x1, x2 = args.box
|
|
face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
|
|
"""
|
|
|
|
reader = read_frames()
|
|
|
|
for i, m in enumerate(mels):
|
|
try:
|
|
frame_to_save = next(reader)
|
|
except StopIteration:
|
|
reader = read_frames()
|
|
frame_to_save = next(reader)
|
|
|
|
face, coords = face_detect([frame_to_save])[0]
|
|
|
|
face = cv2.resize(face, (args.img_size, args.img_size))
|
|
|
|
img_batch.append(face)
|
|
mel_batch.append(m)
|
|
frame_batch.append(frame_to_save)
|
|
coords_batch.append(coords)
|
|
|
|
if len(img_batch) >= args.wav2lip_batch_size:
|
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
|
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, args.img_size//2:] = 0
|
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch
|
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
|
|
|
if len(img_batch) > 0:
|
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
|
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, args.img_size//2:] = 0
|
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch
|
|
|
|
mel_step_size = 16
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
print('Using {} for inference.'.format(device))
|
|
|
|
def _load(checkpoint_path):
|
|
if device == 'cuda':
|
|
checkpoint = torch.load(checkpoint_path)
|
|
else:
|
|
checkpoint = torch.load(checkpoint_path,
|
|
map_location=lambda storage, loc: storage)
|
|
return checkpoint
|
|
|
|
def load_model(path):
|
|
model = Wav2Lip()
|
|
print("Load checkpoint from: {}".format(path))
|
|
checkpoint = _load(path)
|
|
s = checkpoint["state_dict"]
|
|
new_s = {}
|
|
for k, v in s.items():
|
|
new_s[k.replace('module.', '')] = v
|
|
model.load_state_dict(new_s)
|
|
|
|
model = model.to(device)
|
|
return model.eval()
|
|
|
|
def read_frames():
|
|
if args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:
|
|
face = cv2.imread(args.face)
|
|
while 1:
|
|
yield face
|
|
|
|
video_stream = cv2.VideoCapture(args.face)
|
|
fps = video_stream.get(cv2.CAP_PROP_FPS)
|
|
|
|
print('Reading video frames from start...')
|
|
|
|
while 1:
|
|
still_reading, frame = video_stream.read()
|
|
if not still_reading:
|
|
video_stream.release()
|
|
break
|
|
if args.resize_factor > 1:
|
|
frame = cv2.resize(frame, (frame.shape[1]//args.resize_factor, frame.shape[0]//args.resize_factor))
|
|
|
|
if args.rotate:
|
|
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)
|
|
|
|
y1, y2, x1, x2 = args.crop
|
|
if x2 == -1: x2 = frame.shape[1]
|
|
if y2 == -1: y2 = frame.shape[0]
|
|
|
|
frame = frame[y1:y2, x1:x2]
|
|
|
|
yield frame
|
|
|
|
def main():
|
|
if not os.path.isfile(args.face):
|
|
raise ValueError('--face argument must be a valid path to video/image file')
|
|
|
|
elif args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:
|
|
fps = args.fps
|
|
else:
|
|
video_stream = cv2.VideoCapture(args.face)
|
|
fps = video_stream.get(cv2.CAP_PROP_FPS)
|
|
video_stream.release()
|
|
|
|
|
|
if not args.audio.endswith('.wav'):
|
|
print('Extracting raw audio...')
|
|
command = 'ffmpeg -y -i {} -strict -2 {}'.format(args.audio, 'temp/temp.wav')
|
|
|
|
subprocess.call(command, shell=True)
|
|
args.audio = 'temp/temp.wav'
|
|
|
|
wav = audio.load_wav(args.audio, 16000)
|
|
mel = audio.melspectrogram(wav)
|
|
print(mel.shape)
|
|
|
|
if np.isnan(mel.reshape(-1)).sum() > 0:
|
|
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
|
|
|
|
mel_chunks = []
|
|
mel_idx_multiplier = 80./fps
|
|
i = 0
|
|
while 1:
|
|
start_idx = int(i * mel_idx_multiplier)
|
|
if start_idx + mel_step_size > len(mel[0]):
|
|
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
|
|
break
|
|
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
|
|
i += 1
|
|
|
|
print("Length of mel chunks: {}".format(len(mel_chunks)))
|
|
|
|
batch_size = args.wav2lip_batch_size
|
|
gen = datagen(mel_chunks)
|
|
|
|
|
|
|
|
if args.save_as_video:
|
|
gt_out = cv2.VideoWriter("temp/gt.avi", cv2.VideoWriter_fourcc(*'DIVX'), fps, (384, 384))
|
|
pred_out = cv2.VideoWriter("temp/pred.avi", cv2.VideoWriter_fourcc(*'DIVX'), fps, (96, 96))
|
|
|
|
abs_idx = 0
|
|
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen,
|
|
total=int(np.ceil(float(len(mel_chunks))/batch_size)))):
|
|
if i == 0:
|
|
print("Loading segmentation network...")
|
|
seg_net = init_parser(args.segmentation_path)
|
|
|
|
print("Loading super resolution model...")
|
|
sr_net = init_sr_model(args.sr_path)
|
|
|
|
model = load_model(args.checkpoint_path)
|
|
print ("Model loaded")
|
|
|
|
frame_h, frame_w = next(read_frames()).shape[:-1]
|
|
out = cv2.VideoWriter('temp/result.avi',
|
|
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
|
|
|
|
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
|
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
|
|
|
with torch.no_grad():
|
|
pred = model(mel_batch, img_batch)
|
|
|
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
|
|
|
for p, f, c in zip(pred, frames, coords):
|
|
y1, y2, x1, x2 = c
|
|
|
|
if args.save_frames:
|
|
print("saving frames or video...")
|
|
if args.save_as_video:
|
|
print("videos...")
|
|
pred_out.write(p.astype(np.uint8))
|
|
gt_out.write(cv2.resize(f[y1:y2, x1:x2], (384, 384)))
|
|
else:
|
|
print("frames...")
|
|
print(f"{args.gt_path}/{args.image_prefix}{abs_idx}.png")
|
|
cv2.imwrite(f"{args.gt_path}/{args.image_prefix}{abs_idx}.png", f[y1:y2, x1:x2])
|
|
cv2.imwrite(f"{args.pred_path}/{args.image_prefix}{abs_idx}.png", p)
|
|
abs_idx += 1
|
|
|
|
if not args.no_sr:
|
|
p = enhance(sr_net, p)
|
|
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
|
|
|
|
if not args.no_segmentation:
|
|
p = swap_regions(f[y1:y2, x1:x2], p, seg_net)
|
|
|
|
f[y1:y2, x1:x2] = p
|
|
out.write(f)
|
|
|
|
out.release()
|
|
|
|
command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(args.audio, 'temp/result.avi', args.outfile)
|
|
subprocess.call(command, shell=platform.system() != 'Windows')
|
|
|
|
if args.save_frames and args.save_as_video:
|
|
gt_out.release()
|
|
pred_out.release()
|
|
|
|
command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(args.audio, 'temp/gt.avi', args.gt_path)
|
|
subprocess.call(command, shell=platform.system() != 'Windows')
|
|
|
|
command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(args.audio, 'temp/pred.avi', args.pred_path)
|
|
subprocess.call(command, shell=platform.system() != 'Windows')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|