|
import argparse
|
|
import torch
|
|
import torch.onnx
|
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
|
|
|
|
def main(args):
|
|
|
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
if args.params:
|
|
keyname = 'params'
|
|
else:
|
|
keyname = 'params_ema'
|
|
model.load_state_dict(torch.load(args.input)[keyname])
|
|
|
|
model.train(False)
|
|
model.cpu().eval()
|
|
|
|
|
|
x = torch.rand(1, 3, 64, 64)
|
|
|
|
with torch.no_grad():
|
|
torch_out = torch.onnx._export(model, x, args.output, opset_version=11, export_params=True)
|
|
print(torch_out.shape)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
"""Convert pytorch model to onnx models"""
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
'--input', type=str, default='experiments/pretrained_models/RealESRGAN_x4plus.pth', help='Input model path')
|
|
parser.add_argument('--output', type=str, default='realesrgan-x4.onnx', help='Output onnx path')
|
|
parser.add_argument('--params', action='store_false', help='Use params instead of params_ema')
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|
|
|