|
|
|
import cv2
|
|
import numpy as np
|
|
import os
|
|
|
|
|
|
def flowread(flow_path, quantize=False, concat_axis=0, *args, **kwargs):
|
|
"""Read an optical flow map.
|
|
|
|
Args:
|
|
flow_path (ndarray or str): Flow path.
|
|
quantize (bool): whether to read quantized pair, if set to True,
|
|
remaining args will be passed to :func:`dequantize_flow`.
|
|
concat_axis (int): The axis that dx and dy are concatenated,
|
|
can be either 0 or 1. Ignored if quantize is False.
|
|
|
|
Returns:
|
|
ndarray: Optical flow represented as a (h, w, 2) numpy array
|
|
"""
|
|
if quantize:
|
|
assert concat_axis in [0, 1]
|
|
cat_flow = cv2.imread(flow_path, cv2.IMREAD_UNCHANGED)
|
|
if cat_flow.ndim != 2:
|
|
raise IOError(f'{flow_path} is not a valid quantized flow file, ' f'its dimension is {cat_flow.ndim}.')
|
|
assert cat_flow.shape[concat_axis] % 2 == 0
|
|
dx, dy = np.split(cat_flow, 2, axis=concat_axis)
|
|
flow = dequantize_flow(dx, dy, *args, **kwargs)
|
|
else:
|
|
with open(flow_path, 'rb') as f:
|
|
try:
|
|
header = f.read(4).decode('utf-8')
|
|
except Exception:
|
|
raise IOError(f'Invalid flow file: {flow_path}')
|
|
else:
|
|
if header != 'PIEH':
|
|
raise IOError(f'Invalid flow file: {flow_path}, ' 'header does not contain PIEH')
|
|
|
|
w = np.fromfile(f, np.int32, 1).squeeze()
|
|
h = np.fromfile(f, np.int32, 1).squeeze()
|
|
flow = np.fromfile(f, np.float32, w * h * 2).reshape((h, w, 2))
|
|
|
|
return flow.astype(np.float32)
|
|
|
|
|
|
def flowwrite(flow, filename, quantize=False, concat_axis=0, *args, **kwargs):
|
|
"""Write optical flow to file.
|
|
|
|
If the flow is not quantized, it will be saved as a .flo file losslessly,
|
|
otherwise a jpeg image which is lossy but of much smaller size. (dx and dy
|
|
will be concatenated horizontally into a single image if quantize is True.)
|
|
|
|
Args:
|
|
flow (ndarray): (h, w, 2) array of optical flow.
|
|
filename (str): Output filepath.
|
|
quantize (bool): Whether to quantize the flow and save it to 2 jpeg
|
|
images. If set to True, remaining args will be passed to
|
|
:func:`quantize_flow`.
|
|
concat_axis (int): The axis that dx and dy are concatenated,
|
|
can be either 0 or 1. Ignored if quantize is False.
|
|
"""
|
|
if not quantize:
|
|
with open(filename, 'wb') as f:
|
|
f.write('PIEH'.encode('utf-8'))
|
|
np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f)
|
|
flow = flow.astype(np.float32)
|
|
flow.tofile(f)
|
|
f.flush()
|
|
else:
|
|
assert concat_axis in [0, 1]
|
|
dx, dy = quantize_flow(flow, *args, **kwargs)
|
|
dxdy = np.concatenate((dx, dy), axis=concat_axis)
|
|
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
|
cv2.imwrite(filename, dxdy)
|
|
|
|
|
|
def quantize_flow(flow, max_val=0.02, norm=True):
|
|
"""Quantize flow to [0, 255].
|
|
|
|
After this step, the size of flow will be much smaller, and can be
|
|
dumped as jpeg images.
|
|
|
|
Args:
|
|
flow (ndarray): (h, w, 2) array of optical flow.
|
|
max_val (float): Maximum value of flow, values beyond
|
|
[-max_val, max_val] will be truncated.
|
|
norm (bool): Whether to divide flow values by image width/height.
|
|
|
|
Returns:
|
|
tuple[ndarray]: Quantized dx and dy.
|
|
"""
|
|
h, w, _ = flow.shape
|
|
dx = flow[..., 0]
|
|
dy = flow[..., 1]
|
|
if norm:
|
|
dx = dx / w
|
|
dy = dy / h
|
|
|
|
flow_comps = [quantize(d, -max_val, max_val, 255, np.uint8) for d in [dx, dy]]
|
|
return tuple(flow_comps)
|
|
|
|
|
|
def dequantize_flow(dx, dy, max_val=0.02, denorm=True):
|
|
"""Recover from quantized flow.
|
|
|
|
Args:
|
|
dx (ndarray): Quantized dx.
|
|
dy (ndarray): Quantized dy.
|
|
max_val (float): Maximum value used when quantizing.
|
|
denorm (bool): Whether to multiply flow values with width/height.
|
|
|
|
Returns:
|
|
ndarray: Dequantized flow.
|
|
"""
|
|
assert dx.shape == dy.shape
|
|
assert dx.ndim == 2 or (dx.ndim == 3 and dx.shape[-1] == 1)
|
|
|
|
dx, dy = [dequantize(d, -max_val, max_val, 255) for d in [dx, dy]]
|
|
|
|
if denorm:
|
|
dx *= dx.shape[1]
|
|
dy *= dx.shape[0]
|
|
flow = np.dstack((dx, dy))
|
|
return flow
|
|
|
|
|
|
def quantize(arr, min_val, max_val, levels, dtype=np.int64):
|
|
"""Quantize an array of (-inf, inf) to [0, levels-1].
|
|
|
|
Args:
|
|
arr (ndarray): Input array.
|
|
min_val (scalar): Minimum value to be clipped.
|
|
max_val (scalar): Maximum value to be clipped.
|
|
levels (int): Quantization levels.
|
|
dtype (np.type): The type of the quantized array.
|
|
|
|
Returns:
|
|
tuple: Quantized array.
|
|
"""
|
|
if not (isinstance(levels, int) and levels > 1):
|
|
raise ValueError(f'levels must be a positive integer, but got {levels}')
|
|
if min_val >= max_val:
|
|
raise ValueError(f'min_val ({min_val}) must be smaller than max_val ({max_val})')
|
|
|
|
arr = np.clip(arr, min_val, max_val) - min_val
|
|
quantized_arr = np.minimum(np.floor(levels * arr / (max_val - min_val)).astype(dtype), levels - 1)
|
|
|
|
return quantized_arr
|
|
|
|
|
|
def dequantize(arr, min_val, max_val, levels, dtype=np.float64):
|
|
"""Dequantize an array.
|
|
|
|
Args:
|
|
arr (ndarray): Input array.
|
|
min_val (scalar): Minimum value to be clipped.
|
|
max_val (scalar): Maximum value to be clipped.
|
|
levels (int): Quantization levels.
|
|
dtype (np.type): The type of the dequantized array.
|
|
|
|
Returns:
|
|
tuple: Dequantized array.
|
|
"""
|
|
if not (isinstance(levels, int) and levels > 1):
|
|
raise ValueError(f'levels must be a positive integer, but got {levels}')
|
|
if min_val >= max_val:
|
|
raise ValueError(f'min_val ({min_val}) must be smaller than max_val ({max_val})')
|
|
|
|
dequantized_arr = (arr + 0.5).astype(dtype) * (max_val - min_val) / levels + min_val
|
|
|
|
return dequantized_arr
|
|
|