|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
class Conv2d(nn.Module):
|
|
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.conv_block = nn.Sequential(
|
|
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
|
nn.BatchNorm2d(cout)
|
|
)
|
|
self.act = nn.ReLU()
|
|
self.residual = residual
|
|
|
|
def forward(self, x):
|
|
out = self.conv_block(x)
|
|
if self.residual:
|
|
out += x
|
|
return self.act(out)
|
|
|
|
class nonorm_Conv2d(nn.Module):
|
|
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.conv_block = nn.Sequential(
|
|
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
|
)
|
|
self.act = nn.LeakyReLU(0.01, inplace=True)
|
|
|
|
def forward(self, x):
|
|
out = self.conv_block(x)
|
|
return self.act(out)
|
|
|
|
class Conv2dTranspose(nn.Module):
|
|
def __init__(self, cin, cout, kernel_size, stride, padding, output_padding=0, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.conv_block = nn.Sequential(
|
|
nn.ConvTranspose2d(cin, cout, kernel_size, stride, padding, output_padding),
|
|
nn.BatchNorm2d(cout)
|
|
)
|
|
self.act = nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
out = self.conv_block(x)
|
|
return self.act(out)
|
|
|