|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
import math
|
|
|
|
from .conv import Conv2dTranspose, Conv2d, nonorm_Conv2d
|
|
|
|
class Wav2Lip(nn.Module):
|
|
def __init__(self):
|
|
super(Wav2Lip, self).__init__()
|
|
|
|
self.face_encoder_blocks = nn.ModuleList([
|
|
nn.Sequential(Conv2d(6, 16, kernel_size=7, stride=1, padding=3)),
|
|
|
|
nn.Sequential(Conv2d(16, 32, kernel_size=3, stride=2, padding=1),
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True)),
|
|
|
|
nn.Sequential(Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True)),
|
|
|
|
nn.Sequential(Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True)),
|
|
|
|
nn.Sequential(Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True)),
|
|
|
|
nn.Sequential(Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
|
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),),
|
|
|
|
nn.Sequential(Conv2d(512, 512, kernel_size=3, stride=1, padding=0),
|
|
Conv2d(512, 512, kernel_size=1, stride=1, padding=0)),])
|
|
|
|
self.audio_encoder = nn.Sequential(
|
|
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
|
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
|
|
|
|
self.face_decoder_blocks = nn.ModuleList([
|
|
nn.Sequential(Conv2d(512, 512, kernel_size=1, stride=1, padding=0),),
|
|
|
|
nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=1, padding=0),
|
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),),
|
|
|
|
nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
|
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),),
|
|
|
|
nn.Sequential(Conv2dTranspose(768, 384, kernel_size=3, stride=2, padding=1, output_padding=1),
|
|
Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True),),
|
|
|
|
nn.Sequential(Conv2dTranspose(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),),
|
|
|
|
nn.Sequential(Conv2dTranspose(320, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),),
|
|
|
|
nn.Sequential(Conv2dTranspose(160, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),),])
|
|
|
|
self.output_block = nn.Sequential(Conv2d(80, 32, kernel_size=3, stride=1, padding=1),
|
|
nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0),
|
|
nn.Sigmoid())
|
|
|
|
def forward(self, audio_sequences, face_sequences):
|
|
|
|
B = audio_sequences.size(0)
|
|
|
|
input_dim_size = len(face_sequences.size())
|
|
if input_dim_size > 4:
|
|
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
|
|
face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
|
|
|
|
audio_embedding = self.audio_encoder(audio_sequences)
|
|
|
|
feats = []
|
|
x = face_sequences
|
|
for f in self.face_encoder_blocks:
|
|
x = f(x)
|
|
feats.append(x)
|
|
|
|
x = audio_embedding
|
|
for f in self.face_decoder_blocks:
|
|
x = f(x)
|
|
try:
|
|
x = torch.cat((x, feats[-1]), dim=1)
|
|
except Exception as e:
|
|
print(x.size())
|
|
print(feats[-1].size())
|
|
raise e
|
|
|
|
feats.pop()
|
|
|
|
x = self.output_block(x)
|
|
|
|
if input_dim_size > 4:
|
|
x = torch.split(x, B, dim=0)
|
|
outputs = torch.stack(x, dim=2)
|
|
|
|
else:
|
|
outputs = x
|
|
|
|
return outputs
|
|
|
|
class Wav2Lip_disc_qual(nn.Module):
|
|
def __init__(self):
|
|
super(Wav2Lip_disc_qual, self).__init__()
|
|
|
|
self.face_encoder_blocks = nn.ModuleList([
|
|
nn.Sequential(nonorm_Conv2d(3, 32, kernel_size=7, stride=1, padding=3)),
|
|
|
|
nn.Sequential(nonorm_Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=2),
|
|
nonorm_Conv2d(64, 64, kernel_size=5, stride=1, padding=2)),
|
|
|
|
nn.Sequential(nonorm_Conv2d(64, 128, kernel_size=5, stride=2, padding=2),
|
|
nonorm_Conv2d(128, 128, kernel_size=5, stride=1, padding=2)),
|
|
|
|
nn.Sequential(nonorm_Conv2d(128, 256, kernel_size=5, stride=2, padding=2),
|
|
nonorm_Conv2d(256, 256, kernel_size=5, stride=1, padding=2)),
|
|
|
|
nn.Sequential(nonorm_Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
|
|
nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1)),
|
|
|
|
nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
|
|
nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1),),
|
|
|
|
nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=0),
|
|
nonorm_Conv2d(512, 512, kernel_size=1, stride=1, padding=0)),])
|
|
|
|
self.binary_pred = nn.Sequential(nn.Conv2d(512, 1, kernel_size=1, stride=1, padding=0), nn.Sigmoid())
|
|
self.label_noise = .0
|
|
|
|
def get_lower_half(self, face_sequences):
|
|
return face_sequences[:, :, face_sequences.size(2)//2:]
|
|
|
|
def to_2d(self, face_sequences):
|
|
B = face_sequences.size(0)
|
|
face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
|
|
return face_sequences
|
|
|
|
def perceptual_forward(self, false_face_sequences):
|
|
false_face_sequences = self.to_2d(false_face_sequences)
|
|
false_face_sequences = self.get_lower_half(false_face_sequences)
|
|
|
|
false_feats = false_face_sequences
|
|
for f in self.face_encoder_blocks:
|
|
false_feats = f(false_feats)
|
|
|
|
false_pred_loss = F.binary_cross_entropy(self.binary_pred(false_feats).view(len(false_feats), -1),
|
|
torch.ones((len(false_feats), 1)).cuda())
|
|
|
|
return false_pred_loss
|
|
|
|
def forward(self, face_sequences):
|
|
face_sequences = self.to_2d(face_sequences)
|
|
face_sequences = self.get_lower_half(face_sequences)
|
|
|
|
x = face_sequences
|
|
for f in self.face_encoder_blocks:
|
|
x = f(x)
|
|
|
|
return self.binary_pred(x).view(len(x), -1)
|
|
|