Update audio.py
Browse files
audio.py
CHANGED
@@ -1,136 +1,136 @@
|
|
1 |
-
import librosa
|
2 |
-
import librosa.filters
|
3 |
-
import numpy as np
|
4 |
-
# import tensorflow as tf
|
5 |
-
from scipy import signal
|
6 |
-
from scipy.io import wavfile
|
7 |
-
from hparams import hparams as hp
|
8 |
-
|
9 |
-
def load_wav(path, sr):
|
10 |
-
return librosa.core.load(path, sr=sr)[0]
|
11 |
-
|
12 |
-
def save_wav(wav, path, sr):
|
13 |
-
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
|
14 |
-
#proposed by @dsmiller
|
15 |
-
wavfile.write(path, sr, wav.astype(np.int16))
|
16 |
-
|
17 |
-
def save_wavenet_wav(wav, path, sr):
|
18 |
-
librosa.output.write_wav(path, wav, sr=sr)
|
19 |
-
|
20 |
-
def preemphasis(wav, k, preemphasize=True):
|
21 |
-
if preemphasize:
|
22 |
-
return signal.lfilter([1, -k], [1], wav)
|
23 |
-
return wav
|
24 |
-
|
25 |
-
def inv_preemphasis(wav, k, inv_preemphasize=True):
|
26 |
-
if inv_preemphasize:
|
27 |
-
return signal.lfilter([1], [1, -k], wav)
|
28 |
-
return wav
|
29 |
-
|
30 |
-
def get_hop_size():
|
31 |
-
hop_size = hp.hop_size
|
32 |
-
if hop_size is None:
|
33 |
-
assert hp.frame_shift_ms is not None
|
34 |
-
hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
|
35 |
-
return hop_size
|
36 |
-
|
37 |
-
def linearspectrogram(wav):
|
38 |
-
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
39 |
-
S = _amp_to_db(np.abs(D)) - hp.ref_level_db
|
40 |
-
|
41 |
-
if hp.signal_normalization:
|
42 |
-
return _normalize(S)
|
43 |
-
return S
|
44 |
-
|
45 |
-
def melspectrogram(wav):
|
46 |
-
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
47 |
-
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
|
48 |
-
|
49 |
-
if hp.signal_normalization:
|
50 |
-
return _normalize(S)
|
51 |
-
return S
|
52 |
-
|
53 |
-
def _lws_processor():
|
54 |
-
import lws
|
55 |
-
return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech")
|
56 |
-
|
57 |
-
def _stft(y):
|
58 |
-
if hp.use_lws:
|
59 |
-
return _lws_processor(hp).stft(y).T
|
60 |
-
else:
|
61 |
-
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
|
62 |
-
|
63 |
-
##########################################################
|
64 |
-
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
|
65 |
-
def num_frames(length, fsize, fshift):
|
66 |
-
"""Compute number of time frames of spectrogram
|
67 |
-
"""
|
68 |
-
pad = (fsize - fshift)
|
69 |
-
if length % fshift == 0:
|
70 |
-
M = (length + pad * 2 - fsize) // fshift + 1
|
71 |
-
else:
|
72 |
-
M = (length + pad * 2 - fsize) // fshift + 2
|
73 |
-
return M
|
74 |
-
|
75 |
-
|
76 |
-
def pad_lr(x, fsize, fshift):
|
77 |
-
"""Compute left and right padding
|
78 |
-
"""
|
79 |
-
M = num_frames(len(x), fsize, fshift)
|
80 |
-
pad = (fsize - fshift)
|
81 |
-
T = len(x) + 2 * pad
|
82 |
-
r = (M - 1) * fshift + fsize - T
|
83 |
-
return pad, pad + r
|
84 |
-
##########################################################
|
85 |
-
#Librosa correct padding
|
86 |
-
def librosa_pad_lr(x, fsize, fshift):
|
87 |
-
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
|
88 |
-
|
89 |
-
# Conversions
|
90 |
-
_mel_basis = None
|
91 |
-
|
92 |
-
def _linear_to_mel(spectogram):
|
93 |
-
global _mel_basis
|
94 |
-
if _mel_basis is None:
|
95 |
-
_mel_basis = _build_mel_basis()
|
96 |
-
return np.dot(_mel_basis, spectogram)
|
97 |
-
|
98 |
-
def _build_mel_basis():
|
99 |
-
assert hp.fmax <= hp.sample_rate // 2
|
100 |
-
return librosa.filters.mel(hp.sample_rate, hp.n_fft, n_mels=hp.num_mels,
|
101 |
-
fmin=hp.fmin, fmax=hp.fmax)
|
102 |
-
|
103 |
-
def _amp_to_db(x):
|
104 |
-
min_level = np.exp(hp.min_level_db / 20 * np.log(10))
|
105 |
-
return 20 * np.log10(np.maximum(min_level, x))
|
106 |
-
|
107 |
-
def _db_to_amp(x):
|
108 |
-
return np.power(10.0, (x) * 0.05)
|
109 |
-
|
110 |
-
def _normalize(S):
|
111 |
-
if hp.allow_clipping_in_normalization:
|
112 |
-
if hp.symmetric_mels:
|
113 |
-
return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value,
|
114 |
-
-hp.max_abs_value, hp.max_abs_value)
|
115 |
-
else:
|
116 |
-
return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value)
|
117 |
-
|
118 |
-
assert S.max() <= 0 and S.min() - hp.min_level_db >= 0
|
119 |
-
if hp.symmetric_mels:
|
120 |
-
return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value
|
121 |
-
else:
|
122 |
-
return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db))
|
123 |
-
|
124 |
-
def _denormalize(D):
|
125 |
-
if hp.allow_clipping_in_normalization:
|
126 |
-
if hp.symmetric_mels:
|
127 |
-
return (((np.clip(D, -hp.max_abs_value,
|
128 |
-
hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value))
|
129 |
-
+ hp.min_level_db)
|
130 |
-
else:
|
131 |
-
return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
|
132 |
-
|
133 |
-
if hp.symmetric_mels:
|
134 |
-
return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db)
|
135 |
-
else:
|
136 |
-
return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
|
|
|
1 |
+
import librosa
|
2 |
+
import librosa.filters
|
3 |
+
import numpy as np
|
4 |
+
# import tensorflow as tf
|
5 |
+
from scipy import signal
|
6 |
+
from scipy.io import wavfile
|
7 |
+
from hparams import hparams as hp
|
8 |
+
|
9 |
+
def load_wav(path, sr):
|
10 |
+
return librosa.core.load(path, sr=sr)[0]
|
11 |
+
|
12 |
+
def save_wav(wav, path, sr):
|
13 |
+
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
|
14 |
+
#proposed by @dsmiller
|
15 |
+
wavfile.write(path, sr, wav.astype(np.int16))
|
16 |
+
|
17 |
+
def save_wavenet_wav(wav, path, sr):
|
18 |
+
librosa.output.write_wav(path, wav, sr=sr)
|
19 |
+
|
20 |
+
def preemphasis(wav, k, preemphasize=True):
|
21 |
+
if preemphasize:
|
22 |
+
return signal.lfilter([1, -k], [1], wav)
|
23 |
+
return wav
|
24 |
+
|
25 |
+
def inv_preemphasis(wav, k, inv_preemphasize=True):
|
26 |
+
if inv_preemphasize:
|
27 |
+
return signal.lfilter([1], [1, -k], wav)
|
28 |
+
return wav
|
29 |
+
|
30 |
+
def get_hop_size():
|
31 |
+
hop_size = hp.hop_size
|
32 |
+
if hop_size is None:
|
33 |
+
assert hp.frame_shift_ms is not None
|
34 |
+
hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
|
35 |
+
return hop_size
|
36 |
+
|
37 |
+
def linearspectrogram(wav):
|
38 |
+
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
39 |
+
S = _amp_to_db(np.abs(D)) - hp.ref_level_db
|
40 |
+
|
41 |
+
if hp.signal_normalization:
|
42 |
+
return _normalize(S)
|
43 |
+
return S
|
44 |
+
|
45 |
+
def melspectrogram(wav):
|
46 |
+
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
47 |
+
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
|
48 |
+
|
49 |
+
if hp.signal_normalization:
|
50 |
+
return _normalize(S)
|
51 |
+
return S
|
52 |
+
|
53 |
+
def _lws_processor():
|
54 |
+
import lws
|
55 |
+
return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech")
|
56 |
+
|
57 |
+
def _stft(y):
|
58 |
+
if hp.use_lws:
|
59 |
+
return _lws_processor(hp).stft(y).T
|
60 |
+
else:
|
61 |
+
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
|
62 |
+
|
63 |
+
##########################################################
|
64 |
+
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
|
65 |
+
def num_frames(length, fsize, fshift):
|
66 |
+
"""Compute number of time frames of spectrogram
|
67 |
+
"""
|
68 |
+
pad = (fsize - fshift)
|
69 |
+
if length % fshift == 0:
|
70 |
+
M = (length + pad * 2 - fsize) // fshift + 1
|
71 |
+
else:
|
72 |
+
M = (length + pad * 2 - fsize) // fshift + 2
|
73 |
+
return M
|
74 |
+
|
75 |
+
|
76 |
+
def pad_lr(x, fsize, fshift):
|
77 |
+
"""Compute left and right padding
|
78 |
+
"""
|
79 |
+
M = num_frames(len(x), fsize, fshift)
|
80 |
+
pad = (fsize - fshift)
|
81 |
+
T = len(x) + 2 * pad
|
82 |
+
r = (M - 1) * fshift + fsize - T
|
83 |
+
return pad, pad + r
|
84 |
+
##########################################################
|
85 |
+
#Librosa correct padding
|
86 |
+
def librosa_pad_lr(x, fsize, fshift):
|
87 |
+
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
|
88 |
+
|
89 |
+
# Conversions
|
90 |
+
_mel_basis = None
|
91 |
+
|
92 |
+
def _linear_to_mel(spectogram):
|
93 |
+
global _mel_basis
|
94 |
+
if _mel_basis is None:
|
95 |
+
_mel_basis = _build_mel_basis()
|
96 |
+
return np.dot(_mel_basis, spectogram)
|
97 |
+
|
98 |
+
def _build_mel_basis():
|
99 |
+
assert hp.fmax <= hp.sample_rate // 2
|
100 |
+
return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft, n_mels=hp.num_mels,
|
101 |
+
fmin=hp.fmin, fmax=hp.fmax)
|
102 |
+
|
103 |
+
def _amp_to_db(x):
|
104 |
+
min_level = np.exp(hp.min_level_db / 20 * np.log(10))
|
105 |
+
return 20 * np.log10(np.maximum(min_level, x))
|
106 |
+
|
107 |
+
def _db_to_amp(x):
|
108 |
+
return np.power(10.0, (x) * 0.05)
|
109 |
+
|
110 |
+
def _normalize(S):
|
111 |
+
if hp.allow_clipping_in_normalization:
|
112 |
+
if hp.symmetric_mels:
|
113 |
+
return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value,
|
114 |
+
-hp.max_abs_value, hp.max_abs_value)
|
115 |
+
else:
|
116 |
+
return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value)
|
117 |
+
|
118 |
+
assert S.max() <= 0 and S.min() - hp.min_level_db >= 0
|
119 |
+
if hp.symmetric_mels:
|
120 |
+
return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value
|
121 |
+
else:
|
122 |
+
return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db))
|
123 |
+
|
124 |
+
def _denormalize(D):
|
125 |
+
if hp.allow_clipping_in_normalization:
|
126 |
+
if hp.symmetric_mels:
|
127 |
+
return (((np.clip(D, -hp.max_abs_value,
|
128 |
+
hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value))
|
129 |
+
+ hp.min_level_db)
|
130 |
+
else:
|
131 |
+
return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
|
132 |
+
|
133 |
+
if hp.symmetric_mels:
|
134 |
+
return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db)
|
135 |
+
else:
|
136 |
+
return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
|