Adding an example of using pretrained model to predict emotion in local audio file
#1
by
marcmaxmeister
- opened
README.md
CHANGED
@@ -6,4 +6,56 @@ tags:
|
|
6 |
- audio
|
7 |
- HUBert
|
8 |
---
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- audio
|
7 |
- HUBert
|
8 |
---
|
9 |
+
|
10 |
+
|
11 |
+
Working example of using pretrained model to predict emotion in local audio file
|
12 |
+
|
13 |
+
```
|
14 |
+
|
15 |
+
def predict_emotion_hubert(audio_file):
|
16 |
+
""" inspired by an example from https://github.com/m3hrdadfi/soxan """
|
17 |
+
from audio_models import HubertForSpeechClassification
|
18 |
+
from transformers import Wav2Vec2FeatureExtractor, AutoConfig
|
19 |
+
import torch.nn.functional as F
|
20 |
+
import torch
|
21 |
+
import numpy as np
|
22 |
+
from pydub import AudioSegment
|
23 |
+
|
24 |
+
model = HubertForSpeechClassification.from_pretrained("Rajaram1996/Hubert_emotion") # Downloading: 362M
|
25 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960")
|
26 |
+
sampling_rate=16000 # defined by the model; must convert mp3 to this rate.
|
27 |
+
config = AutoConfig.from_pretrained("Rajaram1996/Hubert_emotion")
|
28 |
+
|
29 |
+
def speech_file_to_array(path, sampling_rate):
|
30 |
+
# using torchaudio...
|
31 |
+
# speech_array, _sampling_rate = torchaudio.load(path)
|
32 |
+
# resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate)
|
33 |
+
# speech = resampler(speech_array).squeeze().numpy()
|
34 |
+
sound = AudioSegment.from_file(path)
|
35 |
+
sound = sound.set_frame_rate(sampling_rate)
|
36 |
+
sound_array = np.array(sound.get_array_of_samples())
|
37 |
+
return sound_array
|
38 |
+
|
39 |
+
sound_array = speech_file_to_array(audio_file, sampling_rate)
|
40 |
+
inputs = feature_extractor(sound_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
41 |
+
inputs = {key: inputs[key].to("cpu").float() for key in inputs}
|
42 |
+
|
43 |
+
with torch.no_grad():
|
44 |
+
logits = model(**inputs).logits
|
45 |
+
|
46 |
+
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
47 |
+
outputs = [{
|
48 |
+
"emo": config.id2label[i],
|
49 |
+
"score": round(score * 100, 1)}
|
50 |
+
for i, score in enumerate(scores)
|
51 |
+
]
|
52 |
+
return [row for row in sorted(outputs, key=lambda x:x["score"], reverse=True) if row['score'] != '0.0%'][:2]
|
53 |
+
```
|
54 |
+
|
55 |
+
```
|
56 |
+
|
57 |
+
result = predict_emotion_hubert("male-crying.mp3")
|
58 |
+
>>> result
|
59 |
+
[{'emo': 'male_sad', 'score': 91.0}, {'emo': 'male_fear', 'score': 4.8}]
|
60 |
+
```
|
61 |
+
|