metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- Ransaka/SinhalaASR
metrics:
- wer
model-index:
- name: whisper-tiny-sinhala-20k
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: sinhala_asr
type: sinhala_asr
config: default
split: test
args: default
metrics:
- name: Wer
type: wer
value: 92.99603723159156
whisper-tiny-sinhala-20k
This model is a fine-tuned version of openai/whisper-tiny on the sinhala_asr dataset. It achieves the following results on the evaluation set:
- Loss: 0.2433
- Wer: 92.9960
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4207 | 0.4 | 1000 | 0.3978 | 221.9058 |
0.2966 | 0.8 | 2000 | 0.3009 | 136.3423 |
0.226 | 1.2 | 3000 | 0.2661 | 97.6638 |
0.2224 | 1.6 | 4000 | 0.2510 | 92.3279 |
0.2034 | 2.0 | 5000 | 0.2433 | 92.9960 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.15.0