flux-lokr-psychedelic

This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-dev.

The main validation prompt used during training was:

a psychedelic version of sandy shores, the instagram model hanging out on the beach

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 25
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
a silly psychedelic style desk telephone
Negative Prompt
blurry, cropped, ugly
Prompt
a psychedelic style pikachu
Negative Prompt
blurry, cropped, ugly
Prompt
psychedelic style batman toy
Negative Prompt
blurry, cropped, ugly
Prompt
an overhead shot of a race track shaped like psychedelic
Negative Prompt
blurry, cropped, ugly
Prompt
a woman is wearing a psychedelic necklace
Negative Prompt
blurry, cropped, ugly
Prompt
a book with the psychedelic character on the front cover
Negative Prompt
blurry, cropped, ugly
Prompt
psychedelic trip to the grand canyon
Negative Prompt
blurry, cropped, ugly
Prompt
a psychedelic version of sandy shores, the instagram model hanging out on the beach
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 1
  • Training steps: 1000
  • Learning rate: 5e-05
  • Effective batch size: 2
    • Micro-batch size: 2
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: optimi-lion
  • Precision: bf16
  • Quantised: Yes: int8-quanto
  • Xformers: Not used
  • LyCORIS Config:
{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 10,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 10
            },
            "FeedForward": {
                "factor": 6
            }
        }
    }
}

Datasets

psychedelic

  • Repeats: 10
  • Total number of images: 33
  • Total number of aspect buckets: 1
  • Resolution: 1024 px
  • Cropped: True
  • Crop style: center
  • Crop aspect: square

psychedelic-512

  • Repeats: 10
  • Total number of images: 42
  • Total number of aspect buckets: 1
  • Resolution: 512 px
  • Cropped: True
  • Crop style: center
  • Crop aspect: square

Inference

import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()

prompt = "a psychedelic version of sandy shores, the instagram model hanging out on the beach"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=25,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
9
Inference API
Examples

Model tree for RareConcepts/Flux.1-dev-LoKr-PsychedeliaStyle

Adapter
(13124)
this model