Text Classification
Safetensors
gemma2
custom_code
Ray2333's picture
Upload model.py
b65f8a1 verified
# Modified from Huggingface trl package AutoModelForCausalLMWithValueHead class
# Enabling better customization for generalizable reward modeling
import torch
import torch.nn as nn
from transformers import AutoModelForCausalLM
from trl import PreTrainedModelWrapper
class ValueHead(nn.Module):
def __init__(self, config, **kwargs):
super().__init__()
if not hasattr(config, "summary_dropout_prob"):
summary_dropout_prob = kwargs.pop("summary_dropout_prob", 0.1)
else:
summary_dropout_prob = config.summary_dropout_prob
self.dropout = nn.Dropout(summary_dropout_prob) if summary_dropout_prob else nn.Identity()
# some models such as OPT have a projection layer before the word embeddings - e.g. OPT-350m
if hasattr(config, "hidden_size"):
hidden_size = config.hidden_size
if hasattr(config, "word_embed_proj_dim"):
hidden_size = config.word_embed_proj_dim
elif hasattr(config, "is_encoder_decoder"):
if config.is_encoder_decoder and hasattr(config, "decoder"):
if hasattr(config.decoder, "hidden_size"):
hidden_size = config.decoder.hidden_size
# get vhead config
if hasattr(config, "vhead_layer_type"): # config from json first
self.layer_type = config.vhead_layer_type
else:
self.layer_type = kwargs.pop("vhead_layer_type", 'mlp')
if hasattr(config, 'vhead_num_neurons'):
num_neurons = config.vhead_num_neurons
else:
num_neurons = kwargs.pop("vhead_num_neurons", 1024)
if hasattr(config, 'vhead_num_layers'):
num_layers = config.vhead_num_layers
else:
num_layers = kwargs.pop("vhead_num_layers", 1)
if self.layer_type == 'linear':
self.summary = nn.Linear(hidden_size, 1)
else:
module_lis = []
input_neurons = hidden_size
for i in range(num_layers):
module_lis.extend([nn.Linear(input_neurons, num_neurons), nn.ReLU()])
input_neurons = num_neurons
module_lis.append(nn.Linear(num_neurons, 1))
self.summary = nn.Sequential(*module_lis)
self.flatten = nn.Flatten()
def forward(self, hidden_states):
output = self.dropout(hidden_states)
if (self.layer_type == 'linear' and output.dtype != self.summary.weight.dtype):
output = output.to(self.summary.weight.dtype)
elif (self.layer_type != 'linear' and output.dtype != self.summary[0].weight.dtype):
output = output.to(self.summary[0].weight.dtype)
output = self.summary(output)
return output
class AutoModelForCausalLMWithValueHead(PreTrainedModelWrapper):
transformers_parent_class = AutoModelForCausalLM
lm_head_namings = ["lm_head", "embed_out"]
supported_args = (
"summary_dropout_prob",
"v_head_initializer_range",
"v_head_init_strategy",
"layer_type",
'num_neurons',
'num_layers',
)
def __init__(self, pretrained_model, **kwargs):
r"""
Initializes the model.
"""
super().__init__(pretrained_model, **kwargs)
v_head_kwargs, _, _ = self._split_kwargs(kwargs)
if not any(hasattr(self.pretrained_model, attribute) for attribute in self.lm_head_namings):
raise ValueError("The model does not have a language model head, please use a model that has one.")
self.v_head = ValueHead(self.pretrained_model.config, **v_head_kwargs)
self._init_weights(**v_head_kwargs)
def _init_weights(self, **kwargs):
r"""
Initializes the weights of the value head.
"""
initializer_range = kwargs.pop("v_head_initializer_range", 0.2)
# random init by default
init_strategy = kwargs.pop("v_head_init_strategy", None)
if init_strategy is None:
# do nothing
pass
elif init_strategy == "normal":
self.v_head.summary.weight.data.normal_(mean=0.0, std=initializer_range)
self.v_head.summary.bias.data.zero_()
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
**kwargs,
):
kwargs["output_hidden_states"] = True # this had already been set in the LORA / PEFT examples
kwargs["past_key_values"] = past_key_values
if self.is_peft_model and self.pretrained_model.active_peft_config.peft_type == "PREFIX_TUNING":
kwargs.pop("past_key_values")
base_model_output = self.pretrained_model(
input_ids=input_ids,
attention_mask=attention_mask,
**kwargs,
)
last_hidden_state = base_model_output.hidden_states[-1]
lm_logits = base_model_output.logits
loss = base_model_output.loss
if (hasattr(self.v_head.summary, 'weight') and last_hidden_state.device != self.v_head.summary.weight.device):
last_hidden_state = last_hidden_state.to(self.v_head.summary.weight.device)
elif not hasattr(self.v_head.summary, 'weight') and (last_hidden_state.device != self.v_head.summary[0].weight.device):
last_hidden_state = last_hidden_state.to(self.v_head.summary[0].weight.device)
# use the last token value as reward
if torch.any(attention_mask[:, 0] == 0):
# left padding
last_index = attention_mask.shape[-1] - 1
else:
# right padding
last_index = attention_mask.sum(dim=-1) - 1
value = self.v_head(last_hidden_state).squeeze(-1)[torch.arange(len(last_hidden_state)), last_index]
# force upcast in fp32 if logits are in half-precision
if lm_logits.dtype != torch.float32:
lm_logits = lm_logits.float()
return (lm_logits, loss, value)
def generate(self, *args, **kwargs):
return self.pretrained_model.generate(*args, **kwargs)
def state_dict(self, *args, **kwargs):
pretrained_model_state_dict = self.pretrained_model.state_dict(*args, **kwargs)
v_head_state_dict = self.v_head.state_dict(*args, **kwargs)
for k, v in v_head_state_dict.items():
pretrained_model_state_dict[f"v_head.{k}"] = v
return pretrained_model_state_dict
def push_to_hub(self, *args, **kwargs):
setattr(self.pretrained_model, "v_head", self.v_head)
return self.pretrained_model.push_to_hub(*args, **kwargs)
def post_init(self, state_dict):
for k in list(state_dict.keys()):
if "v_head." in k:
state_dict[k.replace("v_head.", "")] = state_dict.pop(k)
self.v_head.load_state_dict(state_dict, strict=False)
del state_dict
if hasattr(self.pretrained_model, "hf_device_map"):
if (
"cpu" in self.pretrained_model.hf_device_map.values()
or "disk" in self.pretrained_model.hf_device_map.values()
):
raise ValueError(
"The model is offloaded on CPU or disk - CPU & disk offloading is not supported for ValueHead models."
)
first_device = list(set(self.pretrained_model.hf_device_map.values()))[0]
self.v_head = self.v_head.to(first_device)
def set_device_hook(module, input, outputs):
new_output = ()
for output in outputs:
if isinstance(output, torch.Tensor):
new_output += (output.to(first_device),)
else:
new_output += (output,)
return new_output
self.register_forward_hook(set_device_hook)
self.is_sequential_parallel = True
@classmethod
def register_for_auto_class(cls, auto_class="AutoModel"):
if not isinstance(auto_class, str):
auto_class = auto_class.__name__
import transformers.models.auto as auto_module
if not hasattr(auto_module, auto_class):
raise ValueError(f"{auto_class} is not a valid auto class.")
cls._auto_class = auto_class