|
In [ ]: |
|
from transformers import AutoTokenizer |
|
from transformers import AutoModelForSequenceClassification |
|
from scipy.special import softmax |
|
Running cells with 'c:\Users\dell\AppData\Local\Microsoft\WindowsApps\python3.10.exe' requires ipykernel package. |
|
|
|
Run the following command to install 'ipykernel' into the Python environment. |
|
|
|
Command: 'c:/Users/dell/AppData/Local/Microsoft/WindowsApps/python3.10.exe -m pip install ipykernel -U --user --force-reinstall' |
|
In [ ]: |
|
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment" |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL) |
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL) |
|
Running cells with 'c:\Users\dell\AppData\Local\Microsoft\WindowsApps\python3.10.exe' requires ipykernel package. |
|
|
|
Run the following command to install 'ipykernel' into the Python environment. |
|
|
|
Command: 'c:/Users/dell/AppData/Local/Microsoft/WindowsApps/python3.10.exe -m pip install ipykernel -U --user --force-reinstall' |
|
In [5]: |
|
def sentiment(tweet): |
|
encoded_text = tokenizer(tweet,return_tensors='pt') |
|
output = model(**encoded_text) |
|
scores = output[0][0].detach().numpy() |
|
scores = softmax(scores) |
|
scores_dict = { |
|
'NEGATIVE' : scores[0], |
|
'NEUTRAL' : scores[1], |
|
'POSITIVE' : scores[2] |
|
} |
|
return scores_dict |
|
In [7]: |
|
tweet = "you're a sweet person😤" |
|
sentiment(tweet) |
|
Out[7]: |
|
{'NEGATIVE': 0.85113734, 'NEUTRAL': 0.13698761, 'POSITIVE': 0.011875027} |
|
In [ ]: |