Respair's picture
Update README.md
5e89112 verified
|
raw
history blame
1.77 kB
metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper_JP
    results: []

Whisper_JP

This model is a a Phoneme Level Speech Recognition network, originally a fine-tuned version of openai/whisper-large-v3 on a mixture of Different datasets.

It achieves the following results on the evaluation set:

  • Loss: 0.2186
  • Wer: 21.6707

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 24
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 6000

Training results

Training Loss Epoch Step Validation Loss Wer
0.2101 0.8058 1000 0.2090 30.1840
0.1369 1.6116 2000 0.1837 27.6756
0.0838 2.4174 3000 0.1829 26.4036
0.0454 3.2232 4000 0.1922 20.9549
0.0434 4.0290 5000 0.2072 20.8898
0.021 4.8348 6000 0.2186 21.6707

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.4.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1