YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
NarutoDolphin-10B - GGUF
- Model creator: https://huggingface.co/FelixChao/
- Original model: https://huggingface.co/FelixChao/NarutoDolphin-10B/
Name | Quant method | Size |
---|---|---|
NarutoDolphin-10B.Q2_K.gguf | Q2_K | 3.73GB |
NarutoDolphin-10B.IQ3_XS.gguf | IQ3_XS | 4.14GB |
NarutoDolphin-10B.IQ3_S.gguf | IQ3_S | 4.37GB |
NarutoDolphin-10B.Q3_K_S.gguf | Q3_K_S | 4.34GB |
NarutoDolphin-10B.IQ3_M.gguf | IQ3_M | 4.51GB |
NarutoDolphin-10B.Q3_K.gguf | Q3_K | 4.84GB |
NarutoDolphin-10B.Q3_K_M.gguf | Q3_K_M | 4.84GB |
NarutoDolphin-10B.Q3_K_L.gguf | Q3_K_L | 5.26GB |
NarutoDolphin-10B.IQ4_XS.gguf | IQ4_XS | 5.43GB |
NarutoDolphin-10B.Q4_0.gguf | Q4_0 | 5.66GB |
NarutoDolphin-10B.IQ4_NL.gguf | IQ4_NL | 5.72GB |
NarutoDolphin-10B.Q4_K_S.gguf | Q4_K_S | 5.7GB |
NarutoDolphin-10B.Q4_K.gguf | Q4_K | 6.02GB |
NarutoDolphin-10B.Q4_K_M.gguf | Q4_K_M | 6.02GB |
NarutoDolphin-10B.Q4_1.gguf | Q4_1 | 6.27GB |
NarutoDolphin-10B.Q5_0.gguf | Q5_0 | 6.89GB |
NarutoDolphin-10B.Q5_K_S.gguf | Q5_K_S | 6.89GB |
NarutoDolphin-10B.Q5_K.gguf | Q5_K | 7.08GB |
NarutoDolphin-10B.Q5_K_M.gguf | Q5_K_M | 7.08GB |
NarutoDolphin-10B.Q5_1.gguf | Q5_1 | 7.51GB |
NarutoDolphin-10B.Q6_K.gguf | Q6_K | 8.2GB |
NarutoDolphin-10B.Q8_0.gguf | Q8_0 | 10.62GB |
Original model description:
license: apache-2.0 tags: - merge - FelixChao/WizardDolphin-7B - FelixChao/NinjaDolphin-7B
NarutoDolphin-10B
NarutoDolphin-10B is a merge of the following models:
Quantizationed version
Quantizationed version of this model is available thanks to s3nh.
GGUF
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "FelixChao/NarutoDolphin-10B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 8