RichardErkhov's picture
uploaded readme
9c39cd6 verified
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
synapsellm-7b-mistral-v0.4-preview2 - GGUF
- Model creator: https://huggingface.co/WebraftAI/
- Original model: https://huggingface.co/WebraftAI/synapsellm-7b-mistral-v0.4-preview2/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [synapsellm-7b-mistral-v0.4-preview2.Q2_K.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q2_K.gguf) | Q2_K | 2.53GB |
| [synapsellm-7b-mistral-v0.4-preview2.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
| [synapsellm-7b-mistral-v0.4-preview2.IQ3_S.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.IQ3_S.gguf) | IQ3_S | 2.96GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
| [synapsellm-7b-mistral-v0.4-preview2.IQ3_M.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.IQ3_M.gguf) | IQ3_M | 3.06GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q3_K.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q3_K.gguf) | Q3_K | 3.28GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
| [synapsellm-7b-mistral-v0.4-preview2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q4_0.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q4_0.gguf) | Q4_0 | 3.83GB |
| [synapsellm-7b-mistral-v0.4-preview2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q4_K.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q4_K.gguf) | Q4_K | 4.07GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q4_1.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q4_1.gguf) | Q4_1 | 4.24GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q5_0.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q5_0.gguf) | Q5_0 | 4.65GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q5_K.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q5_K.gguf) | Q5_K | 4.78GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q5_1.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q5_1.gguf) | Q5_1 | 5.07GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q6_K.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q6_K.gguf) | Q6_K | 5.53GB |
| [synapsellm-7b-mistral-v0.4-preview2.Q8_0.gguf](https://huggingface.co/RichardErkhov/WebraftAI_-_synapsellm-7b-mistral-v0.4-preview2-gguf/blob/main/synapsellm-7b-mistral-v0.4-preview2.Q8_0.gguf) | Q8_0 | 7.17GB |
Original model description:
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- code
model-index:
- name: synapsellm-7b-mistral-v0.4-preview2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 52.99
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=WebraftAI/synapsellm-7b-mistral-v0.4-preview2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 74.54
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=WebraftAI/synapsellm-7b-mistral-v0.4-preview2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 54.6
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=WebraftAI/synapsellm-7b-mistral-v0.4-preview2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.79
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=WebraftAI/synapsellm-7b-mistral-v0.4-preview2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.95
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=WebraftAI/synapsellm-7b-mistral-v0.4-preview2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.7
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=WebraftAI/synapsellm-7b-mistral-v0.4-preview2
name: Open LLM Leaderboard
---
# SynapseLLM:
SynapseLLM, a significant achievement by WebraftAI, represents a series of large language AI models designed to create robust, generalized, and decentralized information systems. This repository specifically houses the SynapseLLM finetuned version of Mistral. The finetuning process is conducted on a custom dataset, albeit limited in scope, focusing on code and normal question-answering scenarios. This adaptation showcases the model's versatility and applicability within specific domains, contributing to the broader landscape of AI advancements.
## Model Details
**SynapseLLM:**
- Parameters: 7B
- Learning rate: 2e-4
- Adapter used: Qlora
- Precision: float16
- Batch size: 32
- Maximum gradient normal: 0.3
- Optimizer: paged_adamw_32bit
- Warmup Ratio: 0.03
- Step(s) (trained): 150
- Epoch(s) (trained): 1
### Model Description
This is a 7b parameter, decoder only transformer based finetuned model on Chat Q/A and Code instructions. It's a preview finetune on Mistral 7B v0.1 on a sample dataset of 770k rows comprising of 361k Maths Instruct Q/A, 143k GPT-3.5 Q/A, 140k General Code, 63k Python code, and 54k General Q/A (Through GPT-4) [Each row contains one instruction and one response]. This is a full model merged and compiled with trained adapters, so you can easily load this through transformers library.
- **Developed by:** WebraftAI
- **Funded by:** Webraft Cloud
- **Shared by:** WebraftAI
- **Model type:** Decoder-only Transformer
- **Language(s):** English Only
- **License:** Apache 2.0
- **Finetuned from model:** Mistral-7b-v0.1
### Prompt format:
This model follows the same prompt format as mistral instruct 7b v0.1 .The sample prompt is still given below:
```text
<s>[INST] Hello, how are you? [/INST]
```
### Example Code:
Here's an example code using `transformers` library provided by HF.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("WebraftAI/synapsellm-7b-mistral-v0.4-preview2")
model = AutoModelForCausalLM.from_pretrained("WebraftAI/synapsellm-7b-mistral-v0.4-preview2")
prompt= "<s>[INST] Hello! [/INST] "
device = "cuda"
model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
model.to(device)
generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
print(tokenizer.batch_decode(generated_ids)[0])
```
### Model Bias:
This model has some bias areas, discussed below:
- Model might output factually incorrect information.
- Model does not follow system prompts.
- Model does not have any kind of memory, researchers can experiment feeding memory.
- Model is trained on different datas, so it can bias information or exclaim itself as gpt model.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_WebraftAI__synapsellm-7b-mistral-v0.4-preview2)
| Metric |Value|
|---------------------------------|----:|
|Avg. |55.93|
|AI2 Reasoning Challenge (25-Shot)|52.99|
|HellaSwag (10-Shot) |74.54|
|MMLU (5-Shot) |54.60|
|TruthfulQA (0-shot) |53.79|
|Winogrande (5-shot) |73.95|
|GSM8k (5-shot) |25.70|