YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

mistral_tv-neural-marconroni - GGUF

Original model description:

language: - en license: mit model-index: - name: mistral_tv-neural-marconroni results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.2 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aqweteddy/mistral_tv-neural-marconroni name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.26 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aqweteddy/mistral_tv-neural-marconroni name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.07 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aqweteddy/mistral_tv-neural-marconroni name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.03 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aqweteddy/mistral_tv-neural-marconroni name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.9 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aqweteddy/mistral_tv-neural-marconroni name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.19 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aqweteddy/mistral_tv-neural-marconroni name: Open LLM Leaderboard

Chat Vector

CHAT VECTOR: A SIMPLE APPROACH TO EQUIP LLMS WITH NEW LANGUAGE CHAT CAPABILITIES https://arxiv.org/pdf/2310.04799.pdf

With the advancements in conversational AI, such as ChatGPT, this paper focuses on exploring developing Large Language Models (LLMs) for non-English languages, especially emphasizing alignment with human preferences. We introduce a computationally efficient method, leveraging “chat vector,” to synergize pre-existing knowledge and behaviors in LLMs, restructuring the conventional training paradigm from continual pretrain SFT RLHF to continual pretrain + chat. Our empirical studies, primarily focused on Traditional Chinese, employ LLaMA2 as the base model and acquire the chat vector by subtracting the pre-trained weights, LLaMA2, from the weights of LLaMA2-chat. Evaluating from three distinct facets, which are toxicity, ability of instruction following and multi-turn dialogue demonstrates the chat vector's superior efficacy in “chatting”. To confirm the adaptability of our approach, we extend our experiments to include models pre-trained in both Korean and Simplified Chinese, illustrating the versatility of our methodology. Overall, we present a significant solution in aligning LLMs with human preferences efficiently across various languages, accomplished by the chat vector.

Merged LM

  • mistral 7b
  • chat vector
    • neural-chat
    • marconroni

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 71.27
AI2 Reasoning Challenge (25-Shot) 69.20
HellaSwag (10-Shot) 86.26
MMLU (5-Shot) 65.07
TruthfulQA (0-shot) 60.03
Winogrande (5-shot) 80.90
GSM8k (5-shot) 66.19
Downloads last month
22
GGUF
Model size
7.24B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.