RichardErkhov's picture
uploaded readme
a20de61 verified
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
gemma-2-Ifable-9B - GGUF
- Model creator: https://huggingface.co/ifable/
- Original model: https://huggingface.co/ifable/gemma-2-Ifable-9B/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [gemma-2-Ifable-9B.Q2_K.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q2_K.gguf) | Q2_K | 3.54GB |
| [gemma-2-Ifable-9B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.IQ3_XS.gguf) | IQ3_XS | 3.86GB |
| [gemma-2-Ifable-9B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.IQ3_S.gguf) | IQ3_S | 4.04GB |
| [gemma-2-Ifable-9B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q3_K_S.gguf) | Q3_K_S | 4.04GB |
| [gemma-2-Ifable-9B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.IQ3_M.gguf) | IQ3_M | 4.19GB |
| [gemma-2-Ifable-9B.Q3_K.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q3_K.gguf) | Q3_K | 4.43GB |
| [gemma-2-Ifable-9B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q3_K_M.gguf) | Q3_K_M | 4.43GB |
| [gemma-2-Ifable-9B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q3_K_L.gguf) | Q3_K_L | 4.78GB |
| [gemma-2-Ifable-9B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.IQ4_XS.gguf) | IQ4_XS | 4.86GB |
| [gemma-2-Ifable-9B.Q4_0.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q4_0.gguf) | Q4_0 | 5.07GB |
| [gemma-2-Ifable-9B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.IQ4_NL.gguf) | IQ4_NL | 5.1GB |
| [gemma-2-Ifable-9B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q4_K_S.gguf) | Q4_K_S | 5.1GB |
| [gemma-2-Ifable-9B.Q4_K.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q4_K.gguf) | Q4_K | 5.37GB |
| [gemma-2-Ifable-9B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q4_K_M.gguf) | Q4_K_M | 5.37GB |
| [gemma-2-Ifable-9B.Q4_1.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q4_1.gguf) | Q4_1 | 5.55GB |
| [gemma-2-Ifable-9B.Q5_0.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q5_0.gguf) | Q5_0 | 6.04GB |
| [gemma-2-Ifable-9B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q5_K_S.gguf) | Q5_K_S | 6.04GB |
| [gemma-2-Ifable-9B.Q5_K.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q5_K.gguf) | Q5_K | 6.19GB |
| [gemma-2-Ifable-9B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q5_K_M.gguf) | Q5_K_M | 6.19GB |
| [gemma-2-Ifable-9B.Q5_1.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q5_1.gguf) | Q5_1 | 6.52GB |
| [gemma-2-Ifable-9B.Q6_K.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q6_K.gguf) | Q6_K | 7.07GB |
| [gemma-2-Ifable-9B.Q8_0.gguf](https://huggingface.co/RichardErkhov/ifable_-_gemma-2-Ifable-9B-gguf/blob/main/gemma-2-Ifable-9B.Q8_0.gguf) | Q8_0 | 9.15GB |
Original model description:
---
license: gemma
library_name: transformers
datasets:
- jondurbin/gutenberg-dpo-v0.1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ifable/gemma-2-Ifable-9B
This model ranked first on the Creative Writing Benchmark (https://eqbench.com/creative_writing.html) on September 10, 2024
## Training and evaluation data
- Gutenberg: https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1
- Carefully curated proprietary creative writing dataset
## Training procedure
Training method: SimPO (GitHub - princeton-nlp/SimPO: SimPO: Simple Preference Optimization with a Reference-Free Reward)
It achieves the following results on the evaluation set:
- Loss: 1.0163
- Rewards/chosen: -21.6822
- Rewards/rejected: -47.8754
- Rewards/accuracies: 0.9167
- Rewards/margins: 26.1931
- Logps/rejected: -4.7875
- Logps/chosen: -2.1682
- Logits/rejected: -17.0475
- Logits/chosen: -12.0041
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|
| 1.4444 | 0.9807 | 35 | 1.0163 | -21.6822 | -47.8754 | 0.9167 | 26.1931 | -4.7875 | -2.1682 | -17.0475 | -12.0041 | 0.0184 |
### Framework versions
- Transformers 4.43.4
- Pytorch 2.3.0a0+ebedce2
- Datasets 2.20.0
- Tokenizers 0.19.1
We are looking for product manager and operations managers to build applications through our model, and also open for business cooperation, and also AI engineer to join us, contact with : contact@ifable.ai