YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
TinyAlpaca-1.1B - GGUF
- Model creator: https://huggingface.co/luckychao/
- Original model: https://huggingface.co/luckychao/TinyAlpaca-1.1B/
Name | Quant method | Size |
---|---|---|
TinyAlpaca-1.1B.Q2_K.gguf | Q2_K | 0.4GB |
TinyAlpaca-1.1B.IQ3_XS.gguf | IQ3_XS | 0.44GB |
TinyAlpaca-1.1B.IQ3_S.gguf | IQ3_S | 0.47GB |
TinyAlpaca-1.1B.Q3_K_S.gguf | Q3_K_S | 0.47GB |
TinyAlpaca-1.1B.IQ3_M.gguf | IQ3_M | 0.48GB |
TinyAlpaca-1.1B.Q3_K.gguf | Q3_K | 0.51GB |
TinyAlpaca-1.1B.Q3_K_M.gguf | Q3_K_M | 0.51GB |
TinyAlpaca-1.1B.Q3_K_L.gguf | Q3_K_L | 0.55GB |
TinyAlpaca-1.1B.IQ4_XS.gguf | IQ4_XS | 0.57GB |
TinyAlpaca-1.1B.Q4_0.gguf | Q4_0 | 0.59GB |
TinyAlpaca-1.1B.IQ4_NL.gguf | IQ4_NL | 0.6GB |
TinyAlpaca-1.1B.Q4_K_S.gguf | Q4_K_S | 0.6GB |
TinyAlpaca-1.1B.Q4_K.gguf | Q4_K | 0.62GB |
TinyAlpaca-1.1B.Q4_K_M.gguf | Q4_K_M | 0.62GB |
TinyAlpaca-1.1B.Q4_1.gguf | Q4_1 | 0.65GB |
TinyAlpaca-1.1B.Q5_0.gguf | Q5_0 | 0.71GB |
TinyAlpaca-1.1B.Q5_K_S.gguf | Q5_K_S | 0.71GB |
TinyAlpaca-1.1B.Q5_K.gguf | Q5_K | 0.73GB |
TinyAlpaca-1.1B.Q5_K_M.gguf | Q5_K_M | 0.73GB |
TinyAlpaca-1.1B.Q5_1.gguf | Q5_1 | 0.77GB |
TinyAlpaca-1.1B.Q6_K.gguf | Q6_K | 0.84GB |
TinyAlpaca-1.1B.Q8_0.gguf | Q8_0 | 1.09GB |
Original model description:
language: - en datasets: - tatsu-lab/alpaca
Model Card for Model ID
This model checkpoint is the TinyLlama-1.1B fine-tuned on alpaca dataset.
Model Details
Model Sources
- Repository: https://github.com/jzhang38/TinyLlama
- Paper: [https://arxiv.org/abs/2404.02406]
Uses
The use of this model should comply with the restrictions from TinyLlama-1.1b and Stanford Alpaca.
How to Get Started with the Model
Use the code below to get started with the model.
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("luckychao/TinyAlpaca-1.1B")
model = AutoModelForCausalLM.from_pretrained("luckychao/TinyAlpaca-1.1B")
Training Details
Training Data
We use the alpaca dataset, which is created by researchers from Stanford University.
Training Procedure
We follow the same training procedure and mostly same hyper-parameters to fine-tune the original Alpaca model on Llama. The procedure can be found in stanford_alpaca project.
Training Hyperparameters
--num_train_epochs 3 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 4 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--bf16 True \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--model_max_length 2048
Citation
The model is mostly developed for the paper below. Please cite it if you find the repository helpful.
BibTeX:
@article{hao2024exploring,
title={Exploring Backdoor Vulnerabilities of Chat Models},
author={Hao, Yunzhuo and Yang, Wenkai and Lin, Yankai},
journal={arXiv preprint arXiv:2404.02406},
year={2024}
}
- Downloads last month
- 27
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.