uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
TinyAlpaca-1.1B - GGUF
|
11 |
+
- Model creator: https://huggingface.co/luckychao/
|
12 |
+
- Original model: https://huggingface.co/luckychao/TinyAlpaca-1.1B/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [TinyAlpaca-1.1B.Q2_K.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q2_K.gguf) | Q2_K | 0.4GB |
|
18 |
+
| [TinyAlpaca-1.1B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.IQ3_XS.gguf) | IQ3_XS | 0.44GB |
|
19 |
+
| [TinyAlpaca-1.1B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.IQ3_S.gguf) | IQ3_S | 0.47GB |
|
20 |
+
| [TinyAlpaca-1.1B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q3_K_S.gguf) | Q3_K_S | 0.47GB |
|
21 |
+
| [TinyAlpaca-1.1B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.IQ3_M.gguf) | IQ3_M | 0.48GB |
|
22 |
+
| [TinyAlpaca-1.1B.Q3_K.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q3_K.gguf) | Q3_K | 0.51GB |
|
23 |
+
| [TinyAlpaca-1.1B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q3_K_M.gguf) | Q3_K_M | 0.51GB |
|
24 |
+
| [TinyAlpaca-1.1B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q3_K_L.gguf) | Q3_K_L | 0.55GB |
|
25 |
+
| [TinyAlpaca-1.1B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.IQ4_XS.gguf) | IQ4_XS | 0.57GB |
|
26 |
+
| [TinyAlpaca-1.1B.Q4_0.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q4_0.gguf) | Q4_0 | 0.59GB |
|
27 |
+
| [TinyAlpaca-1.1B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.IQ4_NL.gguf) | IQ4_NL | 0.6GB |
|
28 |
+
| [TinyAlpaca-1.1B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q4_K_S.gguf) | Q4_K_S | 0.6GB |
|
29 |
+
| [TinyAlpaca-1.1B.Q4_K.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q4_K.gguf) | Q4_K | 0.62GB |
|
30 |
+
| [TinyAlpaca-1.1B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q4_K_M.gguf) | Q4_K_M | 0.62GB |
|
31 |
+
| [TinyAlpaca-1.1B.Q4_1.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q4_1.gguf) | Q4_1 | 0.65GB |
|
32 |
+
| [TinyAlpaca-1.1B.Q5_0.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q5_0.gguf) | Q5_0 | 0.71GB |
|
33 |
+
| [TinyAlpaca-1.1B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q5_K_S.gguf) | Q5_K_S | 0.71GB |
|
34 |
+
| [TinyAlpaca-1.1B.Q5_K.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q5_K.gguf) | Q5_K | 0.73GB |
|
35 |
+
| [TinyAlpaca-1.1B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q5_K_M.gguf) | Q5_K_M | 0.73GB |
|
36 |
+
| [TinyAlpaca-1.1B.Q5_1.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q5_1.gguf) | Q5_1 | 0.77GB |
|
37 |
+
| [TinyAlpaca-1.1B.Q6_K.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q6_K.gguf) | Q6_K | 0.84GB |
|
38 |
+
| [TinyAlpaca-1.1B.Q8_0.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q8_0.gguf) | Q8_0 | 1.09GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
language:
|
46 |
+
- en
|
47 |
+
datasets:
|
48 |
+
- tatsu-lab/alpaca
|
49 |
+
---
|
50 |
+
# Model Card for Model ID
|
51 |
+
|
52 |
+
This model checkpoint is the TinyLlama-1.1B fine-tuned on [alpaca dataset](https://huggingface.co/datasets/tatsu-lab/alpaca).
|
53 |
+
|
54 |
+
## Model Details
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
<!-- Provide the basic links for the model. -->
|
59 |
+
|
60 |
+
- **Repository:** https://github.com/jzhang38/TinyLlama
|
61 |
+
- **Paper:** [https://arxiv.org/abs/2404.02406]
|
62 |
+
|
63 |
+
## Uses
|
64 |
+
|
65 |
+
|
66 |
+
The use of this model should comply with the restrictions from [TinyLlama-1.1b](https://github.com/jzhang38/TinyLlama) and
|
67 |
+
[Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca).
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
```
|
74 |
+
# Load model directly
|
75 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
76 |
+
|
77 |
+
tokenizer = AutoTokenizer.from_pretrained("luckychao/TinyAlpaca-1.1B")
|
78 |
+
model = AutoModelForCausalLM.from_pretrained("luckychao/TinyAlpaca-1.1B")
|
79 |
+
|
80 |
+
```
|
81 |
+
|
82 |
+
## Training Details
|
83 |
+
|
84 |
+
### Training Data
|
85 |
+
|
86 |
+
We use the [alpaca dataset](https://huggingface.co/datasets/tatsu-lab/alpaca), which is created by researchers from Stanford University.
|
87 |
+
|
88 |
+
### Training Procedure
|
89 |
+
|
90 |
+
We follow the same training procedure and mostly same hyper-parameters to fine-tune the original Alpaca model on Llama. The procedure can be found in [stanford_alpaca project](https://huggingface.co/datasets/tatsu-lab/alpaca).
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
```
|
94 |
+
--num_train_epochs 3 \
|
95 |
+
--per_device_train_batch_size 2 \
|
96 |
+
--per_device_eval_batch_size 2 \
|
97 |
+
--gradient_accumulation_steps 4 \
|
98 |
+
--evaluation_strategy "no" \
|
99 |
+
--save_strategy "steps" \
|
100 |
+
--save_steps 1000 \
|
101 |
+
--save_total_limit 1 \
|
102 |
+
--learning_rate 2e-5 \
|
103 |
+
--weight_decay 0. \
|
104 |
+
--warmup_ratio 0.03 \
|
105 |
+
--lr_scheduler_type "cosine" \
|
106 |
+
--logging_steps 1 \
|
107 |
+
--bf16 True \
|
108 |
+
--fsdp "full_shard auto_wrap" \
|
109 |
+
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
|
110 |
+
--model_max_length 2048
|
111 |
+
|
112 |
+
```
|
113 |
+
|
114 |
+
|
115 |
+
## Citation
|
116 |
+
|
117 |
+
The model is mostly developed for the paper below. Please cite it if you find the repository helpful.
|
118 |
+
|
119 |
+
**BibTeX:**
|
120 |
+
```
|
121 |
+
@article{hao2024exploring,
|
122 |
+
title={Exploring Backdoor Vulnerabilities of Chat Models},
|
123 |
+
author={Hao, Yunzhuo and Yang, Wenkai and Lin, Yankai},
|
124 |
+
journal={arXiv preprint arXiv:2404.02406},
|
125 |
+
year={2024}
|
126 |
+
}
|
127 |
+
```
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|