RichardErkhov commited on
Commit
4e6a90b
·
verified ·
1 Parent(s): 78d300f

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +133 -0
README.md ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ TinyAlpaca-1.1B - GGUF
11
+ - Model creator: https://huggingface.co/luckychao/
12
+ - Original model: https://huggingface.co/luckychao/TinyAlpaca-1.1B/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [TinyAlpaca-1.1B.Q2_K.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q2_K.gguf) | Q2_K | 0.4GB |
18
+ | [TinyAlpaca-1.1B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.IQ3_XS.gguf) | IQ3_XS | 0.44GB |
19
+ | [TinyAlpaca-1.1B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.IQ3_S.gguf) | IQ3_S | 0.47GB |
20
+ | [TinyAlpaca-1.1B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q3_K_S.gguf) | Q3_K_S | 0.47GB |
21
+ | [TinyAlpaca-1.1B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.IQ3_M.gguf) | IQ3_M | 0.48GB |
22
+ | [TinyAlpaca-1.1B.Q3_K.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q3_K.gguf) | Q3_K | 0.51GB |
23
+ | [TinyAlpaca-1.1B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q3_K_M.gguf) | Q3_K_M | 0.51GB |
24
+ | [TinyAlpaca-1.1B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q3_K_L.gguf) | Q3_K_L | 0.55GB |
25
+ | [TinyAlpaca-1.1B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.IQ4_XS.gguf) | IQ4_XS | 0.57GB |
26
+ | [TinyAlpaca-1.1B.Q4_0.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q4_0.gguf) | Q4_0 | 0.59GB |
27
+ | [TinyAlpaca-1.1B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.IQ4_NL.gguf) | IQ4_NL | 0.6GB |
28
+ | [TinyAlpaca-1.1B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q4_K_S.gguf) | Q4_K_S | 0.6GB |
29
+ | [TinyAlpaca-1.1B.Q4_K.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q4_K.gguf) | Q4_K | 0.62GB |
30
+ | [TinyAlpaca-1.1B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q4_K_M.gguf) | Q4_K_M | 0.62GB |
31
+ | [TinyAlpaca-1.1B.Q4_1.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q4_1.gguf) | Q4_1 | 0.65GB |
32
+ | [TinyAlpaca-1.1B.Q5_0.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q5_0.gguf) | Q5_0 | 0.71GB |
33
+ | [TinyAlpaca-1.1B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q5_K_S.gguf) | Q5_K_S | 0.71GB |
34
+ | [TinyAlpaca-1.1B.Q5_K.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q5_K.gguf) | Q5_K | 0.73GB |
35
+ | [TinyAlpaca-1.1B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q5_K_M.gguf) | Q5_K_M | 0.73GB |
36
+ | [TinyAlpaca-1.1B.Q5_1.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q5_1.gguf) | Q5_1 | 0.77GB |
37
+ | [TinyAlpaca-1.1B.Q6_K.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q6_K.gguf) | Q6_K | 0.84GB |
38
+ | [TinyAlpaca-1.1B.Q8_0.gguf](https://huggingface.co/RichardErkhov/luckychao_-_TinyAlpaca-1.1B-gguf/blob/main/TinyAlpaca-1.1B.Q8_0.gguf) | Q8_0 | 1.09GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ language:
46
+ - en
47
+ datasets:
48
+ - tatsu-lab/alpaca
49
+ ---
50
+ # Model Card for Model ID
51
+
52
+ This model checkpoint is the TinyLlama-1.1B fine-tuned on [alpaca dataset](https://huggingface.co/datasets/tatsu-lab/alpaca).
53
+
54
+ ## Model Details
55
+
56
+ ### Model Sources
57
+
58
+ <!-- Provide the basic links for the model. -->
59
+
60
+ - **Repository:** https://github.com/jzhang38/TinyLlama
61
+ - **Paper:** [https://arxiv.org/abs/2404.02406]
62
+
63
+ ## Uses
64
+
65
+
66
+ The use of this model should comply with the restrictions from [TinyLlama-1.1b](https://github.com/jzhang38/TinyLlama) and
67
+ [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca).
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ ```
74
+ # Load model directly
75
+ from transformers import AutoTokenizer, AutoModelForCausalLM
76
+
77
+ tokenizer = AutoTokenizer.from_pretrained("luckychao/TinyAlpaca-1.1B")
78
+ model = AutoModelForCausalLM.from_pretrained("luckychao/TinyAlpaca-1.1B")
79
+
80
+ ```
81
+
82
+ ## Training Details
83
+
84
+ ### Training Data
85
+
86
+ We use the [alpaca dataset](https://huggingface.co/datasets/tatsu-lab/alpaca), which is created by researchers from Stanford University.
87
+
88
+ ### Training Procedure
89
+
90
+ We follow the same training procedure and mostly same hyper-parameters to fine-tune the original Alpaca model on Llama. The procedure can be found in [stanford_alpaca project](https://huggingface.co/datasets/tatsu-lab/alpaca).
91
+
92
+ #### Training Hyperparameters
93
+ ```
94
+ --num_train_epochs 3 \
95
+ --per_device_train_batch_size 2 \
96
+ --per_device_eval_batch_size 2 \
97
+ --gradient_accumulation_steps 4 \
98
+ --evaluation_strategy "no" \
99
+ --save_strategy "steps" \
100
+ --save_steps 1000 \
101
+ --save_total_limit 1 \
102
+ --learning_rate 2e-5 \
103
+ --weight_decay 0. \
104
+ --warmup_ratio 0.03 \
105
+ --lr_scheduler_type "cosine" \
106
+ --logging_steps 1 \
107
+ --bf16 True \
108
+ --fsdp "full_shard auto_wrap" \
109
+ --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
110
+ --model_max_length 2048
111
+
112
+ ```
113
+
114
+
115
+ ## Citation
116
+
117
+ The model is mostly developed for the paper below. Please cite it if you find the repository helpful.
118
+
119
+ **BibTeX:**
120
+ ```
121
+ @article{hao2024exploring,
122
+ title={Exploring Backdoor Vulnerabilities of Chat Models},
123
+ author={Hao, Yunzhuo and Yang, Wenkai and Lin, Yankai},
124
+ journal={arXiv preprint arXiv:2404.02406},
125
+ year={2024}
126
+ }
127
+ ```
128
+
129
+
130
+
131
+
132
+
133
+