|
2024-08-30 20:25:26.549777: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. |
|
2024-08-30 20:25:26.568217: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered |
|
2024-08-30 20:25:26.590253: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered |
|
2024-08-30 20:25:26.597224: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered |
|
2024-08-30 20:25:26.612962: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. |
|
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. |
|
2024-08-30 20:25:27.916342: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT |
|
/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1494: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of π€ Transformers. Use `eval_strategy` instead |
|
warnings.warn( |
|
08/30/2024 20:25:29 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False |
|
08/30/2024 20:25:29 - INFO - __main__ - Training/evaluation parameters TrainingArguments( |
|
_n_gpu=1, |
|
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, |
|
adafactor=False, |
|
adam_beta1=0.9, |
|
adam_beta2=0.999, |
|
adam_epsilon=1e-08, |
|
auto_find_batch_size=False, |
|
batch_eval_metrics=False, |
|
bf16=False, |
|
bf16_full_eval=False, |
|
data_seed=None, |
|
dataloader_drop_last=False, |
|
dataloader_num_workers=0, |
|
dataloader_persistent_workers=False, |
|
dataloader_pin_memory=True, |
|
dataloader_prefetch_factor=None, |
|
ddp_backend=None, |
|
ddp_broadcast_buffers=None, |
|
ddp_bucket_cap_mb=None, |
|
ddp_find_unused_parameters=None, |
|
ddp_timeout=1800, |
|
debug=[], |
|
deepspeed=None, |
|
disable_tqdm=False, |
|
dispatch_batches=None, |
|
do_eval=True, |
|
do_predict=True, |
|
do_train=True, |
|
eval_accumulation_steps=None, |
|
eval_delay=0, |
|
eval_do_concat_batches=True, |
|
eval_on_start=False, |
|
eval_steps=None, |
|
eval_strategy=epoch, |
|
evaluation_strategy=epoch, |
|
fp16=False, |
|
fp16_backend=auto, |
|
fp16_full_eval=False, |
|
fp16_opt_level=O1, |
|
fsdp=[], |
|
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, |
|
fsdp_min_num_params=0, |
|
fsdp_transformer_layer_cls_to_wrap=None, |
|
full_determinism=False, |
|
gradient_accumulation_steps=2, |
|
gradient_checkpointing=False, |
|
gradient_checkpointing_kwargs=None, |
|
greater_is_better=True, |
|
group_by_length=False, |
|
half_precision_backend=auto, |
|
hub_always_push=False, |
|
hub_model_id=None, |
|
hub_private_repo=False, |
|
hub_strategy=every_save, |
|
hub_token=<HUB_TOKEN>, |
|
ignore_data_skip=False, |
|
include_inputs_for_metrics=False, |
|
include_num_input_tokens_seen=False, |
|
include_tokens_per_second=False, |
|
jit_mode_eval=False, |
|
label_names=None, |
|
label_smoothing_factor=0.0, |
|
learning_rate=5e-05, |
|
length_column_name=length, |
|
load_best_model_at_end=True, |
|
local_rank=0, |
|
log_level=passive, |
|
log_level_replica=warning, |
|
log_on_each_node=True, |
|
logging_dir=/content/dissertation/scripts/ner/output/tb, |
|
logging_first_step=False, |
|
logging_nan_inf_filter=True, |
|
logging_steps=500, |
|
logging_strategy=steps, |
|
lr_scheduler_kwargs={}, |
|
lr_scheduler_type=linear, |
|
max_grad_norm=1.0, |
|
max_steps=-1, |
|
metric_for_best_model=f1, |
|
mp_parameters=, |
|
neftune_noise_alpha=None, |
|
no_cuda=False, |
|
num_train_epochs=10.0, |
|
optim=adamw_torch, |
|
optim_args=None, |
|
optim_target_modules=None, |
|
output_dir=/content/dissertation/scripts/ner/output, |
|
overwrite_output_dir=True, |
|
past_index=-1, |
|
per_device_eval_batch_size=8, |
|
per_device_train_batch_size=32, |
|
prediction_loss_only=False, |
|
push_to_hub=True, |
|
push_to_hub_model_id=None, |
|
push_to_hub_organization=None, |
|
push_to_hub_token=<PUSH_TO_HUB_TOKEN>, |
|
ray_scope=last, |
|
remove_unused_columns=True, |
|
report_to=['tensorboard'], |
|
restore_callback_states_from_checkpoint=False, |
|
resume_from_checkpoint=None, |
|
run_name=/content/dissertation/scripts/ner/output, |
|
save_on_each_node=False, |
|
save_only_model=False, |
|
save_safetensors=True, |
|
save_steps=500, |
|
save_strategy=epoch, |
|
save_total_limit=None, |
|
seed=42, |
|
skip_memory_metrics=True, |
|
split_batches=None, |
|
tf32=None, |
|
torch_compile=False, |
|
torch_compile_backend=None, |
|
torch_compile_mode=None, |
|
torchdynamo=None, |
|
tpu_metrics_debug=False, |
|
tpu_num_cores=None, |
|
use_cpu=False, |
|
use_ipex=False, |
|
use_legacy_prediction_loop=False, |
|
use_mps_device=False, |
|
warmup_ratio=0.0, |
|
warmup_steps=0, |
|
weight_decay=0.0, |
|
) |
|
Downloading builder script: 0%| | 0.00/3.54k [00:00<?, ?B/s]
Downloading builder script: 100%|ββββββββββ| 3.54k/3.54k [00:00<00:00, 38.9kB/s] |
|
Downloading data: 0%| | 0.00/27.6M [00:00<?, ?B/s]
Downloading data: 38%|ββββ | 10.5M/27.6M [00:00<00:00, 17.2MB/s]
Downloading data: 76%|ββββββββ | 21.0M/27.6M [00:00<00:00, 28.2MB/s]
Downloading data: 100%|ββββββββββ| 27.6M/27.6M [00:00<00:00, 30.4MB/s] |
|
Downloading data: 0%| | 0.00/6.96M [00:00<?, ?B/s]
Downloading data: 100%|ββββββββββ| 6.96M/6.96M [00:00<00:00, 9.97MB/s]
Downloading data: 100%|ββββββββββ| 6.96M/6.96M [00:00<00:00, 9.90MB/s] |
|
Downloading data: 0%| | 0.00/12.3M [00:00<?, ?B/s]
Downloading data: 85%|βββββββββ | 10.5M/12.3M [00:00<00:00, 14.4MB/s]
Downloading data: 100%|ββββββββββ| 12.3M/12.3M [00:00<00:00, 15.7MB/s] |
|
Generating train split: 0 examples [00:00, ? examples/s]
Generating train split: 680 examples [00:00, 6770.03 examples/s]
Generating train split: 1700 examples [00:00, 6444.09 examples/s]
Generating train split: 2366 examples [00:00, 6429.84 examples/s]
Generating train split: 3354 examples [00:00, 6497.31 examples/s]
Generating train split: 4366 examples [00:00, 6591.28 examples/s]
Generating train split: 5026 examples [00:00, 6590.04 examples/s]
Generating train split: 5752 examples [00:00, 6774.12 examples/s]
Generating train split: 6734 examples [00:01, 6683.22 examples/s]
Generating train split: 7743 examples [00:01, 6692.84 examples/s]
Generating train split: 8733 examples [00:01, 6654.49 examples/s]
Generating train split: 9716 examples [00:01, 6618.43 examples/s]
Generating train split: 10731 examples [00:01, 6660.28 examples/s]
Generating train split: 11751 examples [00:01, 6698.38 examples/s]
Generating train split: 12779 examples [00:01, 6743.63 examples/s]
Generating train split: 13741 examples [00:02, 6639.47 examples/s]
Generating train split: 14750 examples [00:02, 6661.83 examples/s]
Generating train split: 15753 examples [00:02, 6667.19 examples/s]
Generating train split: 16770 examples [00:02, 6696.94 examples/s]
Generating train split: 17747 examples [00:02, 6632.86 examples/s]
Generating train split: 18718 examples [00:02, 6581.28 examples/s]
Generating train split: 19734 examples [00:02, 6632.61 examples/s]
Generating train split: 20717 examples [00:03, 6602.84 examples/s]
Generating train split: 21721 examples [00:03, 6627.21 examples/s]
Generating train split: 22396 examples [00:03, 6650.95 examples/s]
Generating train split: 23379 examples [00:03, 6615.02 examples/s]
Generating train split: 24364 examples [00:03, 6593.55 examples/s]
Generating train split: 25347 examples [00:03, 6543.21 examples/s]
Generating train split: 26334 examples [00:03, 6535.03 examples/s]
Generating train split: 27000 examples [00:04, 6443.51 examples/s]
Generating train split: 27229 examples [00:04, 6605.43 examples/s] |
|
Generating validation split: 0 examples [00:00, ? examples/s]
Generating validation split: 707 examples [00:00, 7037.34 examples/s]
Generating validation split: 1683 examples [00:00, 6583.30 examples/s]
Generating validation split: 2366 examples [00:00, 6499.90 examples/s]
Generating validation split: 3358 examples [00:00, 6523.55 examples/s]
Generating validation split: 4347 examples [00:00, 6486.94 examples/s]
Generating validation split: 5000 examples [00:00, 6445.93 examples/s]
Generating validation split: 5723 examples [00:00, 6658.31 examples/s]
Generating validation split: 6737 examples [00:01, 6690.91 examples/s]
Generating validation split: 6810 examples [00:01, 6559.78 examples/s] |
|
Generating test split: 0 examples [00:00, ? examples/s]
Generating test split: 781 examples [00:00, 7779.50 examples/s]
Generating test split: 1895 examples [00:00, 7535.97 examples/s]
Generating test split: 3000 examples [00:00, 7402.47 examples/s]
Generating test split: 3773 examples [00:00, 7504.86 examples/s]
Generating test split: 4877 examples [00:00, 7443.50 examples/s]
Generating test split: 5656 examples [00:00, 7538.62 examples/s]
Generating test split: 6467 examples [00:00, 7699.53 examples/s]
Generating test split: 7244 examples [00:00, 7715.50 examples/s]
Generating test split: 8436 examples [00:01, 7798.01 examples/s]
Generating test split: 9636 examples [00:01, 7864.66 examples/s]
Generating test split: 10476 examples [00:01, 7824.56 examples/s]
Generating test split: 11677 examples [00:01, 7882.93 examples/s]
Generating test split: 12646 examples [00:01, 5028.97 examples/s]
Generating test split: 13401 examples [00:01, 5421.91 examples/s]
Generating test split: 14168 examples [00:02, 5869.47 examples/s]
Generating test split: 14614 examples [00:02, 6796.13 examples/s] |
|
[INFO|configuration_utils.py:733] 2024-08-30 20:25:41,919 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json |
|
[INFO|configuration_utils.py:800] 2024-08-30 20:25:41,923 >> Model config RobertaConfig { |
|
"_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es", |
|
"architectures": [ |
|
"RobertaForMaskedLM" |
|
], |
|
"attention_probs_dropout_prob": 0.1, |
|
"bos_token_id": 0, |
|
"classifier_dropout": null, |
|
"eos_token_id": 2, |
|
"finetuning_task": "ner", |
|
"gradient_checkpointing": false, |
|
"hidden_act": "gelu", |
|
"hidden_dropout_prob": 0.1, |
|
"hidden_size": 768, |
|
"id2label": { |
|
"0": "O", |
|
"1": "B-ENFERMEDAD", |
|
"2": "I-ENFERMEDAD" |
|
}, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 3072, |
|
"label2id": { |
|
"B-ENFERMEDAD": 1, |
|
"I-ENFERMEDAD": 2, |
|
"O": 0 |
|
}, |
|
"layer_norm_eps": 1e-05, |
|
"max_position_embeddings": 514, |
|
"model_type": "roberta", |
|
"num_attention_heads": 12, |
|
"num_hidden_layers": 12, |
|
"pad_token_id": 1, |
|
"position_embedding_type": "absolute", |
|
"transformers_version": "4.42.4", |
|
"type_vocab_size": 1, |
|
"use_cache": true, |
|
"vocab_size": 50262 |
|
} |
|
|
|
[INFO|configuration_utils.py:733] 2024-08-30 20:25:42,016 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json |
|
[INFO|configuration_utils.py:800] 2024-08-30 20:25:42,017 >> Model config RobertaConfig { |
|
"_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es", |
|
"architectures": [ |
|
"RobertaForMaskedLM" |
|
], |
|
"attention_probs_dropout_prob": 0.1, |
|
"bos_token_id": 0, |
|
"classifier_dropout": null, |
|
"eos_token_id": 2, |
|
"gradient_checkpointing": false, |
|
"hidden_act": "gelu", |
|
"hidden_dropout_prob": 0.1, |
|
"hidden_size": 768, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 3072, |
|
"layer_norm_eps": 1e-05, |
|
"max_position_embeddings": 514, |
|
"model_type": "roberta", |
|
"num_attention_heads": 12, |
|
"num_hidden_layers": 12, |
|
"pad_token_id": 1, |
|
"position_embedding_type": "absolute", |
|
"transformers_version": "4.42.4", |
|
"type_vocab_size": 1, |
|
"use_cache": true, |
|
"vocab_size": 50262 |
|
} |
|
|
|
[INFO|tokenization_utils_base.py:2161] 2024-08-30 20:25:42,027 >> loading file vocab.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/vocab.json |
|
[INFO|tokenization_utils_base.py:2161] 2024-08-30 20:25:42,028 >> loading file merges.txt from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/merges.txt |
|
[INFO|tokenization_utils_base.py:2161] 2024-08-30 20:25:42,028 >> loading file tokenizer.json from cache at None |
|
[INFO|tokenization_utils_base.py:2161] 2024-08-30 20:25:42,028 >> loading file added_tokens.json from cache at None |
|
[INFO|tokenization_utils_base.py:2161] 2024-08-30 20:25:42,028 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/special_tokens_map.json |
|
[INFO|tokenization_utils_base.py:2161] 2024-08-30 20:25:42,028 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/tokenizer_config.json |
|
[INFO|configuration_utils.py:733] 2024-08-30 20:25:42,028 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json |
|
[INFO|configuration_utils.py:800] 2024-08-30 20:25:42,029 >> Model config RobertaConfig { |
|
"_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es", |
|
"architectures": [ |
|
"RobertaForMaskedLM" |
|
], |
|
"attention_probs_dropout_prob": 0.1, |
|
"bos_token_id": 0, |
|
"classifier_dropout": null, |
|
"eos_token_id": 2, |
|
"gradient_checkpointing": false, |
|
"hidden_act": "gelu", |
|
"hidden_dropout_prob": 0.1, |
|
"hidden_size": 768, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 3072, |
|
"layer_norm_eps": 1e-05, |
|
"max_position_embeddings": 514, |
|
"model_type": "roberta", |
|
"num_attention_heads": 12, |
|
"num_hidden_layers": 12, |
|
"pad_token_id": 1, |
|
"position_embedding_type": "absolute", |
|
"transformers_version": "4.42.4", |
|
"type_vocab_size": 1, |
|
"use_cache": true, |
|
"vocab_size": 50262 |
|
} |
|
|
|
[INFO|configuration_utils.py:733] 2024-08-30 20:25:42,112 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json |
|
[INFO|configuration_utils.py:800] 2024-08-30 20:25:42,113 >> Model config RobertaConfig { |
|
"_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es", |
|
"architectures": [ |
|
"RobertaForMaskedLM" |
|
], |
|
"attention_probs_dropout_prob": 0.1, |
|
"bos_token_id": 0, |
|
"classifier_dropout": null, |
|
"eos_token_id": 2, |
|
"gradient_checkpointing": false, |
|
"hidden_act": "gelu", |
|
"hidden_dropout_prob": 0.1, |
|
"hidden_size": 768, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 3072, |
|
"layer_norm_eps": 1e-05, |
|
"max_position_embeddings": 514, |
|
"model_type": "roberta", |
|
"num_attention_heads": 12, |
|
"num_hidden_layers": 12, |
|
"pad_token_id": 1, |
|
"position_embedding_type": "absolute", |
|
"transformers_version": "4.42.4", |
|
"type_vocab_size": 1, |
|
"use_cache": true, |
|
"vocab_size": 50262 |
|
} |
|
|
|
[INFO|modeling_utils.py:3556] 2024-08-30 20:25:42,300 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/pytorch_model.bin |
|
[INFO|modeling_utils.py:4354] 2024-08-30 20:25:42,438 >> Some weights of the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es were not used when initializing RobertaForTokenClassification: ['lm_head.bias', 'lm_head.decoder.bias', 'lm_head.decoder.weight', 'lm_head.dense.bias', 'lm_head.dense.weight', 'lm_head.layer_norm.bias', 'lm_head.layer_norm.weight'] |
|
- This IS expected if you are initializing RobertaForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). |
|
- This IS NOT expected if you are initializing RobertaForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). |
|
[WARNING|modeling_utils.py:4366] 2024-08-30 20:25:42,438 >> Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es and are newly initialized: ['classifier.bias', 'classifier.weight'] |
|
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. |
|
Map: 0%| | 0/27229 [00:00<?, ? examples/s]
Map: 7%|β | 2000/27229 [00:00<00:02, 10564.72 examples/s]
Map: 15%|ββ | 4000/27229 [00:00<00:02, 10953.22 examples/s]
Map: 22%|βββ | 6000/27229 [00:00<00:01, 11153.09 examples/s]
Map: 29%|βββ | 8000/27229 [00:00<00:01, 11313.41 examples/s]
Map: 37%|ββββ | 10000/27229 [00:00<00:01, 11222.22 examples/s]
Map: 44%|βββββ | 12000/27229 [00:01<00:01, 11320.82 examples/s]
Map: 51%|ββββββ | 14000/27229 [00:01<00:01, 11244.86 examples/s]
Map: 59%|ββββββ | 16000/27229 [00:01<00:00, 11231.80 examples/s]
Map: 66%|βββββββ | 18000/27229 [00:01<00:00, 11231.70 examples/s]
Map: 73%|ββββββββ | 20000/27229 [00:01<00:00, 11355.32 examples/s]
Map: 81%|ββββββββ | 22000/27229 [00:01<00:00, 11344.14 examples/s]
Map: 88%|βββββββββ | 24000/27229 [00:02<00:00, 11393.55 examples/s]
Map: 95%|ββββββββββ| 26000/27229 [00:02<00:00, 11349.27 examples/s]
Map: 100%|ββββββββββ| 27229/27229 [00:02<00:00, 10948.22 examples/s]
Map: 100%|ββββββββββ| 27229/27229 [00:02<00:00, 11170.55 examples/s] |
|
Map: 0%| | 0/6810 [00:00<?, ? examples/s]
Map: 29%|βββ | 2000/6810 [00:00<00:00, 11001.37 examples/s]
Map: 59%|ββββββ | 4000/6810 [00:00<00:00, 11030.44 examples/s]
Map: 88%|βββββββββ | 6000/6810 [00:00<00:00, 11133.09 examples/s]
Map: 100%|ββββββββββ| 6810/6810 [00:00<00:00, 11043.95 examples/s] |
|
Map: 0%| | 0/14614 [00:00<?, ? examples/s]
Map: 14%|ββ | 2000/14614 [00:00<00:00, 12902.53 examples/s]
Map: 27%|βββ | 4000/14614 [00:00<00:01, 6743.67 examples/s]
Map: 41%|ββββ | 6000/14614 [00:00<00:00, 8771.21 examples/s]
Map: 55%|ββββββ | 8000/14614 [00:00<00:00, 8837.23 examples/s]
Map: 68%|βββββββ | 10000/14614 [00:01<00:00, 10043.88 examples/s]
Map: 82%|βββββββββ | 12000/14614 [00:01<00:00, 10956.27 examples/s]
Map: 96%|ββββββββββ| 14000/14614 [00:01<00:00, 11520.66 examples/s]
Map: 100%|ββββββββββ| 14614/14614 [00:01<00:00, 10168.24 examples/s] |
|
/content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library π€ Evaluate: https://huggingface.co/docs/evaluate |
|
metric = load_metric("seqeval", trust_remote_code=True) |
|
[INFO|trainer.py:805] 2024-08-30 20:25:48,288 >> The following columns in the training set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message. |
|
[INFO|trainer.py:2128] 2024-08-30 20:25:48,850 >> ***** Running training ***** |
|
[INFO|trainer.py:2129] 2024-08-30 20:25:48,850 >> Num examples = 27,229 |
|
[INFO|trainer.py:2130] 2024-08-30 20:25:48,850 >> Num Epochs = 10 |
|
[INFO|trainer.py:2131] 2024-08-30 20:25:48,850 >> Instantaneous batch size per device = 32 |
|
[INFO|trainer.py:2134] 2024-08-30 20:25:48,850 >> Total train batch size (w. parallel, distributed & accumulation) = 64 |
|
[INFO|trainer.py:2135] 2024-08-30 20:25:48,851 >> Gradient Accumulation steps = 2 |
|
[INFO|trainer.py:2136] 2024-08-30 20:25:48,851 >> Total optimization steps = 4,250 |
|
[INFO|trainer.py:2137] 2024-08-30 20:25:48,851 >> Number of trainable parameters = 124,055,043 |
|
0%| | 0/4250 [00:00<?, ?it/s]
0%| | 1/4250 [00:01<1:18:15, 1.11s/it]
0%| | 2/4250 [00:01<40:12, 1.76it/s]
0%| | 3/4250 [00:01<28:24, 2.49it/s]
0%| | 4/4250 [00:01<22:38, 3.13it/s]
0%| | 5/4250 [00:01<20:43, 3.41it/s]
0%| | 6/4250 [00:02<18:37, 3.80it/s]
0%| | 7/4250 [00:02<17:55, 3.94it/s]
0%| | 8/4250 [00:02<16:59, 4.16it/s]
0%| | 9/4250 [00:02<17:55, 3.94it/s]
0%| | 10/4250 [00:03<17:19, 4.08it/s]
0%| | 11/4250 [00:03<16:45, 4.21it/s]
0%| | 12/4250 [00:03<15:21, 4.60it/s]
0%| | 13/4250 [00:03<17:23, 4.06it/s]
0%| | 14/4250 [00:04<16:58, 4.16it/s]
0%| | 15/4250 [00:04<16:38, 4.24it/s]
0%| | 16/4250 [00:04<15:46, 4.47it/s]
0%| | 17/4250 [00:04<14:44, 4.78it/s]
0%| | 18/4250 [00:04<14:27, 4.88it/s]
0%| | 19/4250 [00:05<15:16, 4.62it/s]
0%| | 20/4250 [00:05<14:22, 4.90it/s]
0%| | 21/4250 [00:05<16:37, 4.24it/s]
1%| | 22/4250 [00:05<15:57, 4.42it/s]
1%| | 23/4250 [00:05<15:28, 4.55it/s]
1%| | 24/4250 [00:06<15:18, 4.60it/s]
1%| | 25/4250 [00:06<16:46, 4.20it/s]
1%| | 26/4250 [00:06<15:14, 4.62it/s]
1%| | 27/4250 [00:06<15:15, 4.61it/s]
1%| | 28/4250 [00:07<14:02, 5.01it/s]
1%| | 29/4250 [00:07<13:43, 5.12it/s]
1%| | 30/4250 [00:07<16:48, 4.18it/s]
1%| | 31/4250 [00:07<15:45, 4.46it/s]
1%| | 32/4250 [00:07<16:53, 4.16it/s]
1%| | 33/4250 [00:08<16:20, 4.30it/s]
1%| | 34/4250 [00:08<16:34, 4.24it/s]
1%| | 35/4250 [00:08<15:53, 4.42it/s]
1%| | 36/4250 [00:08<16:15, 4.32it/s]
1%| | 37/4250 [00:09<15:17, 4.59it/s]
1%| | 38/4250 [00:09<15:07, 4.64it/s]
1%| | 39/4250 [00:09<16:28, 4.26it/s]
1%| | 40/4250 [00:09<15:19, 4.58it/s]
1%| | 41/4250 [00:09<14:59, 4.68it/s]
1%| | 42/4250 [00:10<15:06, 4.64it/s]
1%| | 43/4250 [00:10<17:34, 3.99it/s]
1%| | 44/4250 [00:11<27:51, 2.52it/s]
1%| | 45/4250 [00:11<23:41, 2.96it/s]
1%| | 46/4250 [00:11<22:36, 3.10it/s]
1%| | 47/4250 [00:11<19:58, 3.51it/s]
1%| | 48/4250 [00:12<18:45, 3.73it/s]
1%| | 49/4250 [00:12<16:12, 4.32it/s]
1%| | 50/4250 [00:12<16:45, 4.18it/s]
1%| | 51/4250 [00:12<16:59, 4.12it/s]
1%| | 52/4250 [00:13<16:34, 4.22it/s]
1%| | 53/4250 [00:13<17:18, 4.04it/s]
1%|β | 54/4250 [00:13<20:58, 3.33it/s]
1%|β | 55/4250 [00:13<19:06, 3.66it/s]
1%|β | 56/4250 [00:14<18:27, 3.79it/s]
1%|β | 57/4250 [00:14<17:06, 4.08it/s]
1%|β | 58/4250 [00:14<15:39, 4.46it/s]
1%|β | 59/4250 [00:14<15:05, 4.63it/s]
1%|β | 60/4250 [00:14<14:49, 4.71it/s]
1%|β | 61/4250 [00:15<15:52, 4.40it/s]
1%|β | 62/4250 [00:15<15:58, 4.37it/s]
1%|β | 63/4250 [00:15<15:02, 4.64it/s]
2%|β | 64/4250 [00:15<14:48, 4.71it/s]
2%|β | 65/4250 [00:16<15:34, 4.48it/s]
2%|β | 66/4250 [00:16<16:39, 4.19it/s]
2%|β | 67/4250 [00:16<16:33, 4.21it/s]
2%|β | 68/4250 [00:17<20:48, 3.35it/s]
2%|β | 69/4250 [00:17<18:35, 3.75it/s]
2%|β | 70/4250 [00:17<19:57, 3.49it/s]
2%|β | 71/4250 [00:17<18:59, 3.67it/s]
2%|β | 72/4250 [00:18<17:43, 3.93it/s]
2%|β | 73/4250 [00:18<17:16, 4.03it/s]
2%|β | 74/4250 [00:18<17:31, 3.97it/s]
2%|β | 75/4250 [00:18<15:35, 4.46it/s]
2%|β | 76/4250 [00:18<16:09, 4.30it/s]
2%|β | 77/4250 [00:19<15:16, 4.55it/s]
2%|β | 78/4250 [00:19<14:19, 4.85it/s]
2%|β | 79/4250 [00:19<14:56, 4.65it/s]
2%|β | 80/4250 [00:19<15:15, 4.56it/s]
2%|β | 81/4250 [00:19<15:31, 4.47it/s]
2%|β | 82/4250 [00:20<14:46, 4.70it/s]
2%|β | 83/4250 [00:20<16:51, 4.12it/s]
2%|β | 84/4250 [00:20<15:25, 4.50it/s]
2%|β | 85/4250 [00:20<15:09, 4.58it/s]
2%|β | 86/4250 [00:21<15:01, 4.62it/s]
2%|β | 87/4250 [00:21<15:03, 4.61it/s]
2%|β | 88/4250 [00:21<13:40, 5.07it/s]
2%|β | 89/4250 [00:21<13:52, 5.00it/s]
2%|β | 90/4250 [00:21<16:14, 4.27it/s]
2%|β | 91/4250 [00:22<14:35, 4.75it/s]
2%|β | 92/4250 [00:22<14:04, 4.93it/s]
2%|β | 93/4250 [00:22<13:20, 5.19it/s]
2%|β | 94/4250 [00:22<13:59, 4.95it/s]
2%|β | 95/4250 [00:22<15:09, 4.57it/s]
2%|β | 96/4250 [00:23<16:58, 4.08it/s]
2%|β | 97/4250 [00:23<15:55, 4.34it/s]
2%|β | 98/4250 [00:23<14:47, 4.68it/s]
2%|β | 99/4250 [00:23<14:10, 4.88it/s]
2%|β | 100/4250 [00:24<14:30, 4.77it/s]
2%|β | 101/4250 [00:24<18:02, 3.83it/s]
2%|β | 102/4250 [00:24<20:27, 3.38it/s]
2%|β | 103/4250 [00:25<18:31, 3.73it/s]
2%|β | 104/4250 [00:25<17:01, 4.06it/s]
2%|β | 105/4250 [00:25<16:41, 4.14it/s]
2%|β | 106/4250 [00:25<16:12, 4.26it/s]
3%|β | 107/4250 [00:25<15:58, 4.32it/s]
3%|β | 108/4250 [00:26<19:11, 3.60it/s]
3%|β | 109/4250 [00:26<18:38, 3.70it/s]
3%|β | 110/4250 [00:26<17:15, 4.00it/s]
3%|β | 111/4250 [00:26<15:36, 4.42it/s]
3%|β | 112/4250 [00:27<16:11, 4.26it/s]
3%|β | 113/4250 [00:27<15:49, 4.36it/s]
3%|β | 114/4250 [00:27<14:38, 4.71it/s]
3%|β | 115/4250 [00:27<14:08, 4.87it/s]
3%|β | 116/4250 [00:28<15:38, 4.40it/s]
3%|β | 117/4250 [00:28<15:11, 4.54it/s]
3%|β | 118/4250 [00:28<14:46, 4.66it/s]
3%|β | 119/4250 [00:28<15:08, 4.55it/s]
3%|β | 120/4250 [00:28<14:14, 4.83it/s]
3%|β | 121/4250 [00:29<14:19, 4.80it/s]
3%|β | 122/4250 [00:29<20:15, 3.40it/s]
3%|β | 123/4250 [00:29<18:33, 3.71it/s]
3%|β | 124/4250 [00:29<16:55, 4.06it/s]
3%|β | 125/4250 [00:30<17:07, 4.01it/s]
3%|β | 126/4250 [00:30<15:33, 4.42it/s]
3%|β | 127/4250 [00:30<14:50, 4.63it/s]
3%|β | 128/4250 [00:30<14:17, 4.81it/s]
3%|β | 129/4250 [00:31<17:35, 3.90it/s]
3%|β | 130/4250 [00:31<17:02, 4.03it/s]
3%|β | 131/4250 [00:31<15:32, 4.42it/s]
3%|β | 132/4250 [00:31<14:40, 4.68it/s]
3%|β | 133/4250 [00:31<15:39, 4.38it/s]
3%|β | 134/4250 [00:32<15:20, 4.47it/s]
3%|β | 135/4250 [00:32<15:08, 4.53it/s]
3%|β | 136/4250 [00:32<15:13, 4.50it/s]
3%|β | 137/4250 [00:32<15:00, 4.57it/s]
3%|β | 138/4250 [00:33<14:29, 4.73it/s]
3%|β | 139/4250 [00:33<14:58, 4.58it/s]
3%|β | 140/4250 [00:33<15:55, 4.30it/s]
3%|β | 141/4250 [00:33<15:59, 4.28it/s]
3%|β | 142/4250 [00:33<15:00, 4.56it/s]
3%|β | 143/4250 [00:34<14:38, 4.67it/s]
3%|β | 144/4250 [00:34<14:27, 4.73it/s]
3%|β | 145/4250 [00:34<16:59, 4.03it/s]
3%|β | 146/4250 [00:35<22:15, 3.07it/s]
3%|β | 147/4250 [00:35<19:50, 3.45it/s]
3%|β | 148/4250 [00:35<19:43, 3.47it/s]
4%|β | 149/4250 [00:35<18:58, 3.60it/s]
4%|β | 150/4250 [00:36<17:38, 3.87it/s]
4%|β | 151/4250 [00:36<16:10, 4.23it/s]
4%|β | 152/4250 [00:36<17:03, 4.00it/s]
4%|β | 153/4250 [00:36<16:24, 4.16it/s]
4%|β | 154/4250 [00:37<15:22, 4.44it/s]
4%|β | 155/4250 [00:37<14:32, 4.70it/s]
4%|β | 156/4250 [00:37<14:50, 4.60it/s]
4%|β | 157/4250 [00:37<14:30, 4.70it/s]
4%|β | 158/4250 [00:37<17:37, 3.87it/s]
4%|β | 159/4250 [00:38<18:35, 3.67it/s]
4%|β | 160/4250 [00:38<17:00, 4.01it/s]
4%|β | 161/4250 [00:38<16:02, 4.25it/s]
4%|β | 162/4250 [00:38<14:55, 4.56it/s]
4%|β | 163/4250 [00:39<14:47, 4.60it/s]
4%|β | 164/4250 [00:39<18:40, 3.65it/s]
4%|β | 165/4250 [00:39<18:13, 3.74it/s]
4%|β | 166/4250 [00:40<18:24, 3.70it/s]
4%|β | 167/4250 [00:40<17:29, 3.89it/s]
4%|β | 168/4250 [00:40<15:56, 4.27it/s]
4%|β | 169/4250 [00:40<15:32, 4.38it/s]
4%|β | 170/4250 [00:40<15:28, 4.39it/s]
4%|β | 171/4250 [00:41<16:01, 4.24it/s]
4%|β | 172/4250 [00:41<15:13, 4.46it/s]
4%|β | 173/4250 [00:41<18:22, 3.70it/s]
4%|β | 174/4250 [00:41<16:38, 4.08it/s]
4%|β | 175/4250 [00:42<19:24, 3.50it/s]
4%|β | 176/4250 [00:42<19:20, 3.51it/s]
4%|β | 177/4250 [00:42<17:04, 3.98it/s]
4%|β | 178/4250 [00:42<16:07, 4.21it/s]
4%|β | 179/4250 [00:43<15:41, 4.32it/s]
4%|β | 180/4250 [00:43<14:28, 4.69it/s]
4%|β | 181/4250 [00:43<14:38, 4.63it/s]
4%|β | 182/4250 [00:43<17:11, 3.94it/s]
4%|β | 183/4250 [00:44<16:36, 4.08it/s]
4%|β | 184/4250 [00:44<16:28, 4.11it/s]
4%|β | 185/4250 [00:44<15:07, 4.48it/s]
4%|β | 186/4250 [00:44<14:39, 4.62it/s]
4%|β | 187/4250 [00:44<13:47, 4.91it/s]
4%|β | 188/4250 [00:45<14:41, 4.61it/s]
4%|β | 189/4250 [00:45<14:11, 4.77it/s]
4%|β | 190/4250 [00:45<13:45, 4.92it/s]
4%|β | 191/4250 [00:45<14:23, 4.70it/s]
5%|β | 192/4250 [00:45<14:11, 4.76it/s]
5%|β | 193/4250 [00:46<13:55, 4.86it/s]
5%|β | 194/4250 [00:46<16:42, 4.05it/s]
5%|β | 195/4250 [00:46<15:38, 4.32it/s]
5%|β | 196/4250 [00:46<14:26, 4.68it/s]
5%|β | 197/4250 [00:47<14:55, 4.53it/s]
5%|β | 198/4250 [00:47<15:19, 4.41it/s]
5%|β | 199/4250 [00:47<15:25, 4.38it/s]
5%|β | 200/4250 [00:47<15:35, 4.33it/s]
5%|β | 201/4250 [00:48<15:14, 4.43it/s]
5%|β | 202/4250 [00:48<15:31, 4.35it/s]
5%|β | 203/4250 [00:48<14:26, 4.67it/s]
5%|β | 204/4250 [00:48<13:47, 4.89it/s]
5%|β | 205/4250 [00:48<14:44, 4.57it/s]
5%|β | 206/4250 [00:49<14:29, 4.65it/s]
5%|β | 207/4250 [00:49<16:45, 4.02it/s]
5%|β | 208/4250 [00:49<15:19, 4.40it/s]
5%|β | 209/4250 [00:49<15:12, 4.43it/s]
5%|β | 210/4250 [00:49<14:01, 4.80it/s]
5%|β | 211/4250 [00:50<15:09, 4.44it/s]
5%|β | 212/4250 [00:50<14:26, 4.66it/s]
5%|β | 213/4250 [00:50<17:31, 3.84it/s]
5%|β | 214/4250 [00:50<15:24, 4.37it/s]
5%|β | 215/4250 [00:51<15:17, 4.40it/s]
5%|β | 216/4250 [00:51<19:04, 3.52it/s]
5%|β | 217/4250 [00:51<17:03, 3.94it/s]
5%|β | 218/4250 [00:51<15:56, 4.21it/s]
5%|β | 219/4250 [00:52<16:35, 4.05it/s]
5%|β | 220/4250 [00:52<16:40, 4.03it/s]
5%|β | 221/4250 [00:52<18:41, 3.59it/s]
5%|β | 222/4250 [00:53<20:01, 3.35it/s]
5%|β | 223/4250 [00:53<18:26, 3.64it/s]
5%|β | 224/4250 [00:53<16:31, 4.06it/s]
5%|β | 225/4250 [00:53<15:07, 4.43it/s]
5%|β | 226/4250 [00:53<14:23, 4.66it/s]
5%|β | 227/4250 [00:54<14:01, 4.78it/s]
5%|β | 228/4250 [00:54<13:47, 4.86it/s]
5%|β | 229/4250 [00:54<12:58, 5.17it/s]
5%|β | 230/4250 [00:54<14:21, 4.67it/s]
5%|β | 231/4250 [00:54<13:45, 4.87it/s]
5%|β | 232/4250 [00:55<13:35, 4.93it/s]
5%|β | 233/4250 [00:55<13:23, 5.00it/s]
6%|β | 234/4250 [00:55<15:41, 4.26it/s]
6%|β | 235/4250 [00:56<20:37, 3.24it/s]
6%|β | 236/4250 [00:56<21:51, 3.06it/s]
6%|β | 237/4250 [00:56<19:42, 3.39it/s]
6%|β | 238/4250 [00:56<17:25, 3.84it/s]
6%|β | 239/4250 [00:57<17:28, 3.83it/s]
6%|β | 240/4250 [00:57<19:56, 3.35it/s]
6%|β | 241/4250 [00:57<17:57, 3.72it/s]
6%|β | 242/4250 [00:57<16:26, 4.06it/s]
6%|β | 243/4250 [00:58<15:57, 4.19it/s]
6%|β | 244/4250 [00:58<15:58, 4.18it/s]
6%|β | 245/4250 [00:58<15:56, 4.19it/s]
6%|β | 246/4250 [00:59<24:58, 2.67it/s]
6%|β | 247/4250 [00:59<22:20, 2.99it/s]
6%|β | 248/4250 [00:59<19:38, 3.40it/s]
6%|β | 249/4250 [01:00<23:51, 2.80it/s]
6%|β | 250/4250 [01:00<25:17, 2.64it/s]
6%|β | 251/4250 [01:01<22:48, 2.92it/s]
6%|β | 252/4250 [01:01<19:31, 3.41it/s]
6%|β | 253/4250 [01:01<17:13, 3.87it/s]
6%|β | 254/4250 [01:01<17:53, 3.72it/s]
6%|β | 255/4250 [01:01<18:10, 3.66it/s]
6%|β | 256/4250 [01:02<17:55, 3.71it/s]
6%|β | 257/4250 [01:02<16:43, 3.98it/s]
6%|β | 258/4250 [01:02<15:35, 4.27it/s]
6%|β | 259/4250 [01:02<14:28, 4.59it/s]
6%|β | 260/4250 [01:03<15:44, 4.22it/s]
6%|β | 261/4250 [01:03<15:00, 4.43it/s]
6%|β | 262/4250 [01:03<13:52, 4.79it/s]
6%|β | 263/4250 [01:03<12:53, 5.15it/s]
6%|β | 264/4250 [01:03<14:53, 4.46it/s]
6%|β | 265/4250 [01:04<15:50, 4.19it/s]
6%|β | 266/4250 [01:04<15:46, 4.21it/s]
6%|β | 267/4250 [01:04<15:43, 4.22it/s]
6%|β | 268/4250 [01:04<14:47, 4.49it/s]
6%|β | 269/4250 [01:05<14:19, 4.63it/s]
6%|β | 270/4250 [01:05<16:43, 3.97it/s]
6%|β | 271/4250 [01:05<15:07, 4.38it/s]
6%|β | 272/4250 [01:05<14:35, 4.54it/s]
6%|β | 273/4250 [01:05<14:08, 4.69it/s]
6%|β | 274/4250 [01:06<13:43, 4.83it/s]
6%|β | 275/4250 [01:06<13:31, 4.90it/s]
6%|β | 276/4250 [01:06<12:58, 5.11it/s]
7%|β | 277/4250 [01:06<13:41, 4.84it/s]
7%|β | 278/4250 [01:06<13:31, 4.89it/s]
7%|β | 279/4250 [01:07<14:09, 4.67it/s]
7%|β | 280/4250 [01:07<17:33, 3.77it/s]
7%|β | 281/4250 [01:07<16:06, 4.10it/s]
7%|β | 282/4250 [01:07<15:58, 4.14it/s]
7%|β | 283/4250 [01:08<15:01, 4.40it/s]
7%|β | 284/4250 [01:08<14:33, 4.54it/s]
7%|β | 285/4250 [01:08<14:43, 4.49it/s]
7%|β | 286/4250 [01:08<14:18, 4.62it/s]
7%|β | 287/4250 [01:09<15:53, 4.16it/s]
7%|β | 288/4250 [01:09<14:44, 4.48it/s]
7%|β | 289/4250 [01:09<14:55, 4.42it/s]
7%|β | 290/4250 [01:09<14:05, 4.69it/s]
7%|β | 291/4250 [01:09<14:55, 4.42it/s]
7%|β | 292/4250 [01:10<14:01, 4.70it/s]
7%|β | 293/4250 [01:10<13:19, 4.95it/s]
7%|β | 294/4250 [01:10<12:53, 5.11it/s]
7%|β | 295/4250 [01:10<14:15, 4.62it/s]
7%|β | 296/4250 [01:10<13:25, 4.91it/s]
7%|β | 297/4250 [01:11<13:07, 5.02it/s]
7%|β | 298/4250 [01:11<13:03, 5.04it/s]
7%|β | 299/4250 [01:11<13:43, 4.80it/s]
7%|β | 300/4250 [01:11<15:32, 4.23it/s]
7%|β | 301/4250 [01:12<14:53, 4.42it/s]
7%|β | 302/4250 [01:12<16:06, 4.09it/s]
7%|β | 303/4250 [01:12<17:14, 3.82it/s]
7%|β | 304/4250 [01:12<16:34, 3.97it/s]
7%|β | 305/4250 [01:13<16:20, 4.03it/s]
7%|β | 306/4250 [01:13<18:10, 3.62it/s]
7%|β | 307/4250 [01:13<16:03, 4.09it/s]
7%|β | 308/4250 [01:13<15:15, 4.31it/s]
7%|β | 309/4250 [01:14<15:01, 4.37it/s]
7%|β | 310/4250 [01:14<14:24, 4.56it/s]
7%|β | 311/4250 [01:14<13:58, 4.70it/s]
7%|β | 312/4250 [01:14<16:55, 3.88it/s]
7%|β | 313/4250 [01:15<16:12, 4.05it/s]
7%|β | 314/4250 [01:15<16:17, 4.03it/s]
7%|β | 315/4250 [01:15<15:12, 4.31it/s]
7%|β | 316/4250 [01:15<14:32, 4.51it/s]
7%|β | 317/4250 [01:15<15:41, 4.18it/s]
7%|β | 318/4250 [01:16<15:25, 4.25it/s]
8%|β | 319/4250 [01:16<15:46, 4.15it/s]
8%|β | 320/4250 [01:16<16:25, 3.99it/s]
8%|β | 321/4250 [01:16<15:03, 4.35it/s]
8%|β | 322/4250 [01:17<14:35, 4.49it/s]
8%|β | 323/4250 [01:17<13:27, 4.86it/s]
8%|β | 324/4250 [01:17<13:13, 4.95it/s]
8%|β | 325/4250 [01:17<13:22, 4.89it/s]
8%|β | 326/4250 [01:17<12:56, 5.05it/s]
8%|β | 327/4250 [01:18<12:34, 5.20it/s]
8%|β | 328/4250 [01:18<16:35, 3.94it/s]
8%|β | 329/4250 [01:18<17:45, 3.68it/s]
8%|β | 330/4250 [01:18<16:40, 3.92it/s]
8%|β | 331/4250 [01:19<16:15, 4.02it/s]
8%|β | 332/4250 [01:19<15:10, 4.31it/s]
8%|β | 333/4250 [01:19<14:15, 4.58it/s]
8%|β | 334/4250 [01:19<14:33, 4.48it/s]
8%|β | 335/4250 [01:20<15:52, 4.11it/s]
8%|β | 336/4250 [01:20<15:40, 4.16it/s]
8%|β | 337/4250 [01:20<14:30, 4.50it/s]
8%|β | 338/4250 [01:20<13:51, 4.70it/s]
8%|β | 339/4250 [01:21<17:39, 3.69it/s]
8%|β | 340/4250 [01:21<16:24, 3.97it/s]
8%|β | 341/4250 [01:21<17:23, 3.75it/s]
8%|β | 342/4250 [01:21<15:45, 4.13it/s]
8%|β | 343/4250 [01:22<16:07, 4.04it/s]
8%|β | 344/4250 [01:22<15:55, 4.09it/s]
8%|β | 345/4250 [01:22<17:25, 3.74it/s]
8%|β | 346/4250 [01:22<18:30, 3.52it/s]
8%|β | 347/4250 [01:23<17:09, 3.79it/s]
8%|β | 348/4250 [01:23<18:01, 3.61it/s]
8%|β | 349/4250 [01:23<16:19, 3.98it/s]
8%|β | 350/4250 [01:23<16:02, 4.05it/s]
8%|β | 351/4250 [01:24<15:28, 4.20it/s]
8%|β | 352/4250 [01:24<15:45, 4.12it/s]
8%|β | 353/4250 [01:24<14:05, 4.61it/s]
8%|β | 354/4250 [01:24<14:12, 4.57it/s]
8%|β | 355/4250 [01:25<15:18, 4.24it/s]
8%|β | 356/4250 [01:25<14:48, 4.38it/s]
8%|β | 357/4250 [01:25<14:00, 4.63it/s]
8%|β | 358/4250 [01:25<13:29, 4.81it/s]
8%|β | 359/4250 [01:25<12:50, 5.05it/s]
8%|β | 360/4250 [01:26<14:46, 4.39it/s]
8%|β | 361/4250 [01:26<14:14, 4.55it/s]
9%|β | 362/4250 [01:26<13:28, 4.81it/s]
9%|β | 363/4250 [01:26<14:21, 4.51it/s]
9%|β | 364/4250 [01:27<20:35, 3.15it/s]
9%|β | 365/4250 [01:27<19:18, 3.35it/s]
9%|β | 366/4250 [01:27<18:56, 3.42it/s]
9%|β | 367/4250 [01:27<17:11, 3.77it/s]
9%|β | 368/4250 [01:28<15:13, 4.25it/s]
9%|β | 369/4250 [01:28<16:11, 4.00it/s]
9%|β | 370/4250 [01:28<15:10, 4.26it/s]
9%|β | 371/4250 [01:28<14:18, 4.52it/s]
9%|β | 372/4250 [01:29<13:52, 4.66it/s]
9%|β | 373/4250 [01:29<15:47, 4.09it/s]
9%|β | 374/4250 [01:29<15:20, 4.21it/s]
9%|β | 375/4250 [01:30<25:51, 2.50it/s]
9%|β | 376/4250 [01:30<22:05, 2.92it/s]
9%|β | 377/4250 [01:30<19:34, 3.30it/s]
9%|β | 378/4250 [01:30<17:28, 3.69it/s]
9%|β | 379/4250 [01:31<15:52, 4.06it/s]
9%|β | 380/4250 [01:31<15:12, 4.24it/s]
9%|β | 381/4250 [01:31<14:26, 4.46it/s]
9%|β | 382/4250 [01:31<13:57, 4.62it/s]
9%|β | 383/4250 [01:32<15:16, 4.22it/s]
9%|β | 384/4250 [01:32<14:11, 4.54it/s]
9%|β | 385/4250 [01:32<16:37, 3.87it/s]
9%|β | 386/4250 [01:32<18:50, 3.42it/s]
9%|β | 387/4250 [01:33<16:38, 3.87it/s]
9%|β | 388/4250 [01:33<15:54, 4.05it/s]
9%|β | 389/4250 [01:33<15:11, 4.24it/s]
9%|β | 390/4250 [01:33<15:52, 4.05it/s]
9%|β | 391/4250 [01:33<14:31, 4.43it/s]
9%|β | 392/4250 [01:34<14:36, 4.40it/s]
9%|β | 393/4250 [01:34<13:42, 4.69it/s]
9%|β | 394/4250 [01:34<13:42, 4.69it/s]
9%|β | 395/4250 [01:34<13:04, 4.91it/s]
9%|β | 396/4250 [01:34<12:50, 5.00it/s]
9%|β | 397/4250 [01:35<13:30, 4.75it/s]
9%|β | 398/4250 [01:35<14:10, 4.53it/s]
9%|β | 399/4250 [01:35<13:17, 4.83it/s]
9%|β | 400/4250 [01:35<14:40, 4.37it/s]
9%|β | 401/4250 [01:36<14:06, 4.54it/s]
9%|β | 402/4250 [01:36<15:53, 4.04it/s]
9%|β | 403/4250 [01:36<15:28, 4.14it/s]
10%|β | 404/4250 [01:36<14:41, 4.36it/s]
10%|β | 405/4250 [01:37<15:17, 4.19it/s]
10%|β | 406/4250 [01:37<15:58, 4.01it/s]
10%|β | 407/4250 [01:38<23:04, 2.78it/s]
10%|β | 408/4250 [01:38<21:23, 2.99it/s]
10%|β | 409/4250 [01:38<18:34, 3.45it/s]
10%|β | 410/4250 [01:38<17:37, 3.63it/s]
10%|β | 411/4250 [01:38<17:21, 3.68it/s]
10%|β | 412/4250 [01:39<18:26, 3.47it/s]
10%|β | 413/4250 [01:39<17:12, 3.72it/s]
10%|β | 414/4250 [01:39<16:36, 3.85it/s]
10%|β | 415/4250 [01:39<15:21, 4.16it/s]
10%|β | 416/4250 [01:40<14:56, 4.28it/s]
10%|β | 417/4250 [01:40<14:55, 4.28it/s]
10%|β | 418/4250 [01:40<13:45, 4.64it/s]
10%|β | 419/4250 [01:40<14:56, 4.27it/s]
10%|β | 420/4250 [01:41<15:00, 4.25it/s]
10%|β | 421/4250 [01:41<15:28, 4.12it/s]
10%|β | 422/4250 [01:41<14:59, 4.26it/s]
10%|β | 423/4250 [01:41<13:50, 4.61it/s]
10%|β | 424/4250 [01:42<14:34, 4.37it/s]
10%|β | 425/4250 [01:42<14:28, 4.40it/s][INFO|trainer.py:805] 2024-08-30 20:27:31,190 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message. |
|
[INFO|trainer.py:3788] 2024-08-30 20:27:31,192 >> |
|
***** Running Evaluation ***** |
|
[INFO|trainer.py:3790] 2024-08-30 20:27:31,192 >> Num examples = 6810 |
|
[INFO|trainer.py:3793] 2024-08-30 20:27:31,192 >> Batch size = 8 |
|
|
|
0%| | 0/852 [00:00<?, ?it/s][A |
|
1%| | 9/852 [00:00<00:09, 88.66it/s][A |
|
2%|β | 18/852 [00:00<00:10, 79.48it/s][A |
|
3%|β | 27/852 [00:00<00:10, 78.72it/s][A |
|
4%|β | 35/852 [00:00<00:10, 77.17it/s][A |
|
5%|β | 43/852 [00:00<00:10, 77.47it/s][A |
|
6%|β | 51/852 [00:00<00:10, 78.01it/s][A |
|
7%|β | 60/852 [00:00<00:10, 78.82it/s][A |
|
8%|β | 68/852 [00:00<00:10, 76.55it/s][A |
|
9%|β | 76/852 [00:00<00:10, 76.57it/s][A |
|
10%|β | 84/852 [00:01<00:10, 74.53it/s][A |
|
11%|β | 92/852 [00:01<00:10, 74.88it/s][A |
|
12%|ββ | 100/852 [00:01<00:10, 74.67it/s][A |
|
13%|ββ | 108/852 [00:01<00:09, 74.65it/s][A |
|
14%|ββ | 116/852 [00:01<00:09, 75.39it/s][A |
|
15%|ββ | 125/852 [00:01<00:09, 76.70it/s][A |
|
16%|ββ | 133/852 [00:01<00:09, 72.98it/s][A |
|
17%|ββ | 141/852 [00:01<00:09, 73.08it/s][A |
|
17%|ββ | 149/852 [00:01<00:09, 72.57it/s][A |
|
18%|ββ | 157/852 [00:02<00:09, 74.49it/s][A |
|
19%|ββ | 165/852 [00:02<00:09, 75.40it/s][A |
|
20%|ββ | 173/852 [00:02<00:08, 75.96it/s][A |
|
21%|ββ | 181/852 [00:02<00:08, 76.27it/s][A |
|
22%|βββ | 190/852 [00:02<00:08, 77.54it/s][A |
|
23%|βββ | 198/852 [00:02<00:08, 77.17it/s][A |
|
24%|βββ | 206/852 [00:02<00:08, 76.97it/s][A |
|
25%|βββ | 214/852 [00:02<00:08, 75.85it/s][A |
|
26%|βββ | 222/852 [00:02<00:08, 77.02it/s][A |
|
27%|βββ | 230/852 [00:03<00:07, 77.88it/s][A |
|
28%|βββ | 238/852 [00:03<00:07, 77.06it/s][A |
|
29%|βββ | 246/852 [00:03<00:08, 75.49it/s][A |
|
30%|βββ | 255/852 [00:03<00:07, 77.83it/s][A |
|
31%|βββ | 263/852 [00:03<00:07, 78.44it/s][A |
|
32%|ββββ | 271/852 [00:03<00:07, 77.33it/s][A |
|
33%|ββββ | 280/852 [00:03<00:07, 78.78it/s][A |
|
34%|ββββ | 288/852 [00:03<00:07, 78.13it/s][A |
|
35%|ββββ | 296/852 [00:03<00:07, 78.46it/s][A |
|
36%|ββββ | 305/852 [00:03<00:06, 79.51it/s][A |
|
37%|ββββ | 313/852 [00:04<00:06, 77.59it/s][A |
|
38%|ββββ | 322/852 [00:04<00:06, 79.45it/s][A |
|
39%|ββββ | 330/852 [00:04<00:06, 78.56it/s][A |
|
40%|ββββ | 338/852 [00:04<00:06, 75.62it/s][A |
|
41%|ββββ | 346/852 [00:04<00:06, 76.01it/s][A |
|
42%|βββββ | 354/852 [00:04<00:06, 75.26it/s][A |
|
42%|βββββ | 362/852 [00:04<00:06, 75.94it/s][A |
|
43%|βββββ | 370/852 [00:04<00:06, 76.55it/s][A |
|
44%|βββββ | 378/852 [00:04<00:06, 77.17it/s][A |
|
45%|βββββ | 386/852 [00:05<00:06, 76.59it/s][A |
|
46%|βββββ | 395/852 [00:05<00:05, 77.79it/s][A |
|
47%|βββββ | 403/852 [00:05<00:05, 77.58it/s][A |
|
48%|βββββ | 411/852 [00:05<00:05, 75.31it/s][A |
|
49%|βββββ | 419/852 [00:05<00:05, 76.29it/s][A |
|
50%|βββββ | 427/852 [00:05<00:05, 74.65it/s][A |
|
51%|βββββ | 435/852 [00:05<00:05, 75.66it/s][A |
|
52%|ββββββ | 443/852 [00:05<00:05, 76.76it/s][A |
|
53%|ββββββ | 451/852 [00:05<00:05, 77.61it/s][A |
|
54%|ββββββ | 460/852 [00:05<00:05, 77.74it/s][A |
|
55%|ββββββ | 468/852 [00:06<00:05, 75.24it/s][A |
|
56%|ββββββ | 476/852 [00:06<00:05, 72.34it/s][A |
|
57%|ββββββ | 484/852 [00:06<00:05, 72.40it/s][A |
|
58%|ββββββ | 492/852 [00:06<00:04, 74.29it/s][A |
|
59%|ββββββ | 501/852 [00:06<00:04, 76.52it/s][A |
|
60%|ββββββ | 509/852 [00:06<00:04, 75.58it/s][A |
|
61%|ββββββ | 517/852 [00:06<00:04, 76.67it/s][A |
|
62%|βββββββ | 525/852 [00:06<00:04, 75.52it/s][A |
|
63%|βββββββ | 533/852 [00:06<00:04, 75.91it/s][A |
|
63%|βββββββ | 541/852 [00:07<00:04, 77.03it/s][A |
|
64%|βββββββ | 549/852 [00:07<00:04, 75.19it/s][A |
|
65%|βββββββ | 557/852 [00:07<00:03, 75.67it/s][A |
|
66%|βββββββ | 566/852 [00:07<00:03, 77.52it/s][A |
|
67%|βββββββ | 574/852 [00:07<00:03, 77.51it/s][A |
|
68%|βββββββ | 582/852 [00:07<00:03, 76.66it/s][A |
|
69%|βββββββ | 590/852 [00:07<00:03, 75.98it/s][A |
|
70%|βββββββ | 598/852 [00:07<00:03, 76.35it/s][A |
|
71%|βββββββ | 606/852 [00:07<00:03, 76.06it/s][A |
|
72%|ββββββββ | 614/852 [00:08<00:03, 75.05it/s][A |
|
73%|ββββββββ | 622/852 [00:08<00:03, 75.43it/s][A |
|
74%|ββββββββ | 630/852 [00:08<00:02, 74.34it/s][A |
|
75%|ββββββββ | 638/852 [00:08<00:02, 75.78it/s][A |
|
76%|ββββββββ | 646/852 [00:08<00:02, 73.52it/s][A |
|
77%|ββββββββ | 654/852 [00:08<00:02, 75.08it/s][A |
|
78%|ββββββββ | 662/852 [00:08<00:02, 75.52it/s][A |
|
79%|ββββββββ | 670/852 [00:08<00:02, 76.49it/s][A |
|
80%|ββββββββ | 678/852 [00:08<00:02, 77.21it/s][A |
|
81%|ββββββββ | 686/852 [00:08<00:02, 77.55it/s][A |
|
82%|βββββββββ | 695/852 [00:09<00:01, 78.56it/s][A |
|
83%|βββββββββ | 704/852 [00:09<00:01, 79.29it/s][A |
|
84%|βββββββββ | 713/852 [00:09<00:01, 79.99it/s][A |
|
85%|βββββββββ | 721/852 [00:09<00:01, 78.74it/s][A |
|
86%|βββββββββ | 730/852 [00:09<00:01, 79.95it/s][A |
|
87%|βββββββββ | 738/852 [00:09<00:01, 79.68it/s][A |
|
88%|βββββββββ | 747/852 [00:09<00:01, 80.02it/s][A |
|
89%|βββββββββ | 756/852 [00:09<00:01, 80.47it/s][A |
|
90%|βββββββββ | 765/852 [00:09<00:01, 80.21it/s][A |
|
91%|βββββββββ | 774/852 [00:10<00:00, 79.37it/s][A |
|
92%|ββββββββββ| 782/852 [00:10<00:00, 78.22it/s][A |
|
93%|ββββββββββ| 790/852 [00:10<00:00, 77.38it/s][A |
|
94%|ββββββββββ| 798/852 [00:10<00:00, 76.61it/s][A |
|
95%|ββββββββββ| 807/852 [00:10<00:00, 78.06it/s][A |
|
96%|ββββββββββ| 815/852 [00:10<00:00, 76.73it/s][A |
|
97%|ββββββββββ| 824/852 [00:10<00:00, 77.89it/s][A |
|
98%|ββββββββββ| 833/852 [00:10<00:00, 78.72it/s][A |
|
99%|ββββββββββ| 841/852 [00:10<00:00, 77.89it/s][A |
|
100%|ββββββββββ| 849/852 [00:11<00:00, 75.32it/s][A
|
|
[A
10%|β | 425/4250 [01:57<14:28, 4.40it/s] |
|
100%|ββββββββββ| 852/852 [00:14<00:00, 75.32it/s][A |
|
[A[INFO|trainer.py:3478] 2024-08-30 20:27:45,881 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-425 |
|
[INFO|configuration_utils.py:472] 2024-08-30 20:27:45,882 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-425/config.json |
|
[INFO|modeling_utils.py:2690] 2024-08-30 20:27:47,247 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-425/model.safetensors |
|
[INFO|tokenization_utils_base.py:2574] 2024-08-30 20:27:47,248 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-425/tokenizer_config.json |
|
[INFO|tokenization_utils_base.py:2583] 2024-08-30 20:27:47,248 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-425/special_tokens_map.json |
|
[INFO|tokenization_utils_base.py:2574] 2024-08-30 20:27:50,017 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json |
|
[INFO|tokenization_utils_base.py:2583] 2024-08-30 20:27:50,017 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json |
|
10%|β | 426/4250 [02:01<6:17:25, 5.92s/it]
10%|β | 427/4250 [02:01<4:27:24, 4.20s/it]
10%|β | 428/4250 [02:01<3:11:11, 3.00s/it]
10%|β | 429/4250 [02:02<2:20:01, 2.20s/it]
10%|β | 430/4250 [02:02<1:41:14, 1.59s/it]
10%|β | 431/4250 [02:02<1:15:55, 1.19s/it]
10%|β | 432/4250 [02:02<56:49, 1.12it/s]
10%|β | 433/4250 [02:02<43:08, 1.47it/s]
10%|β | 434/4250 [02:03<35:31, 1.79it/s]
10%|β | 435/4250 [02:03<28:25, 2.24it/s]
10%|β | 436/4250 [02:03<24:21, 2.61it/s]
10%|β | 437/4250 [02:03<20:52, 3.04it/s]
10%|β | 438/4250 [02:04<18:32, 3.43it/s]
10%|β | 439/4250 [02:04<17:05, 3.72it/s]
10%|β | 440/4250 [02:04<15:35, 4.07it/s]
10%|β | 441/4250 [02:04<14:45, 4.30it/s]
10%|β | 442/4250 [02:04<14:42, 4.32it/s]
10%|β | 443/4250 [02:05<16:22, 3.88it/s]
10%|β | 444/4250 [02:05<15:35, 4.07it/s]
10%|β | 445/4250 [02:05<14:09, 4.48it/s]
10%|β | 446/4250 [02:05<15:10, 4.18it/s]
11%|β | 447/4250 [02:06<14:17, 4.43it/s]
11%|β | 448/4250 [02:06<13:13, 4.79it/s]
11%|β | 449/4250 [02:06<13:06, 4.83it/s]
11%|β | 450/4250 [02:06<15:05, 4.20it/s]
11%|β | 451/4250 [02:07<15:49, 4.00it/s]
11%|β | 452/4250 [02:07<14:54, 4.25it/s]
11%|β | 453/4250 [02:07<15:41, 4.03it/s]
11%|β | 454/4250 [02:07<15:39, 4.04it/s]
11%|β | 455/4250 [02:08<15:58, 3.96it/s]
11%|β | 456/4250 [02:08<14:30, 4.36it/s]
11%|β | 457/4250 [02:08<13:21, 4.73it/s]
11%|β | 458/4250 [02:08<14:27, 4.37it/s]
11%|β | 459/4250 [02:09<24:59, 2.53it/s]
11%|β | 460/4250 [02:09<25:16, 2.50it/s]
11%|β | 461/4250 [02:10<23:13, 2.72it/s]
11%|β | 462/4250 [02:10<20:18, 3.11it/s]
11%|β | 463/4250 [02:10<18:00, 3.51it/s]
11%|β | 464/4250 [02:10<16:52, 3.74it/s]
11%|β | 465/4250 [02:10<15:29, 4.07it/s]
11%|β | 466/4250 [02:11<14:52, 4.24it/s]
11%|β | 467/4250 [02:11<15:16, 4.13it/s]
11%|β | 468/4250 [02:11<15:22, 4.10it/s]
11%|β | 469/4250 [02:11<14:56, 4.22it/s]
11%|β | 470/4250 [02:12<14:16, 4.41it/s]
11%|β | 471/4250 [02:12<13:02, 4.83it/s]
11%|β | 472/4250 [02:12<14:34, 4.32it/s]
11%|β | 473/4250 [02:12<14:11, 4.43it/s]
11%|β | 474/4250 [02:13<15:34, 4.04it/s]
11%|β | 475/4250 [02:13<19:44, 3.19it/s]
11%|β | 476/4250 [02:13<19:06, 3.29it/s]
11%|β | 477/4250 [02:14<18:12, 3.45it/s]
11%|β | 478/4250 [02:14<18:34, 3.39it/s]
11%|ββ | 479/4250 [02:14<17:12, 3.65it/s]
11%|ββ | 480/4250 [02:14<15:17, 4.11it/s]
11%|ββ | 481/4250 [02:15<16:05, 3.90it/s]
11%|ββ | 482/4250 [02:15<17:51, 3.52it/s]
11%|ββ | 483/4250 [02:15<16:15, 3.86it/s]
11%|ββ | 484/4250 [02:15<14:39, 4.28it/s]
11%|ββ | 485/4250 [02:16<14:48, 4.24it/s]
11%|ββ | 486/4250 [02:16<15:40, 4.00it/s]
11%|ββ | 487/4250 [02:16<14:28, 4.33it/s]
11%|ββ | 488/4250 [02:16<14:12, 4.41it/s]
12%|ββ | 489/4250 [02:17<18:04, 3.47it/s]
12%|ββ | 490/4250 [02:17<16:37, 3.77it/s]
12%|ββ | 491/4250 [02:17<16:44, 3.74it/s]
12%|ββ | 492/4250 [02:17<15:59, 3.92it/s]
12%|ββ | 493/4250 [02:18<14:35, 4.29it/s]
12%|ββ | 494/4250 [02:18<15:03, 4.16it/s]
12%|ββ | 495/4250 [02:18<17:00, 3.68it/s]
12%|ββ | 496/4250 [02:18<16:06, 3.89it/s]
12%|ββ | 497/4250 [02:19<14:40, 4.26it/s] |