Ruth's picture
Upload README.md
f87b83e
|
raw
history blame
1.6 kB
---
language:
- de
license: mit
datasets:
- germeval_14
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: gelectra-large-germeval_14
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: germeval_14
type: germeval_14
args: default
metrics:
- name: precision
type: precision
value: 0.85778125349123
- name: recall
type: recall
value: 0.8761839552664613
- name: f1
type: f1
value: 0.8668849497572543
- name: accuracy
type: accuracy
value: 0.976306430788049
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gelectra-large-germeval_14
This model is a fine-tuned version of [deepset/gelectra-large](https://huggingface.co/deepset/gelectra-large) on the germeval_14 dataset.
It achieves the following results on the evaluation set:
- precision: 0.8578
- recall: 0.8762
- f1: 0.8669
- accuracy: 0.9763
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- num_train_epochs: 5
- train_batch_size: 8
- eval_batch_size: 8
- learning_rate: 2e-05
- weight_decay_rate: 0.01
- num_warmup_steps: 0
- fp16: True
### Framework versions
- Transformers 4.18.0
- Datasets 1.18.0
- Tokenizers 0.12.1