CodeTrans model for source code summarization python
Pretrained model on programming language python using the t5 base model architecture. It was first released in this repository. This model is trained on tokenized python code functions: it works best with tokenized python functions.
Model description
This CodeTrans model is based on the t5-base
model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets.
Intended uses & limitations
The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better.
How to use
Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline:
from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
pipeline = SummarizationPipeline(
model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_python_multitask"),
tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_python_multitask", skip_special_tokens=True),
device=0
)
tokenized_code = '''with open ( CODE_STRING , CODE_STRING ) as in_file : buf = in_file . readlines ( ) with open ( CODE_STRING , CODE_STRING ) as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write ( line ) '''
pipeline([tokenized_code])
Run this example in colab notebook.
Training data
The supervised training tasks datasets can be downloaded on Link
Training procedure
Multi-task Pretraining
The model was trained on a single TPU Pod V3-8 for 260,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
Evaluation results
For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score):
Test results :
Language / Model | Python | SQL | C# |
---|---|---|---|
CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 |
CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 |
CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 |
CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 |
CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 |
CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 |
CodeTrans-MT-Base | 13.37 | 19.24 | 23.20 |
CodeTrans-MT-Large | 13.24 | 19.40 | 23.57 |
CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 |
CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 |
CodeTrans-MT-TF-Large | 12.14 | 19.98 | 21.10 |
CODE-NN | -- | 18.40 | 20.50 |
Created by Ahmed Elnaggar | LinkedIn and Wei Ding | LinkedIn
- Downloads last month
- 13