language: fa
datasets:
- common_voice_6_1
tags:
- audio
- automatic-speech-recognition
license: mit
widget:
- example_title: Common Voice Sample 1
src: >-
https://datasets-server.huggingface.co/assets/common_voice/--/fa/train/0/audio/audio.mp3
- example_title: Common Voice Sample 2
src: >-
https://datasets-server.huggingface.co/assets/common_voice/--/fa/train/1/audio/audio.mp3
model-index:
- name: Sharif-wav2vec2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Corpus 6.1 (clean)
type: common_voice_6_1
config: clean
split: test
args:
language: fa
metrics:
- name: Test WER
type: wer
value: 6
Sharif-wav2vec2
This is the fine-tuned version of Sharif Wav2vec2 for Farsi. The base model was fine-tuned on 108 hours of Commonvoice's Farsi samples with a sampling rate equal to 16kHz. Afterward, we trained a 5gram using kenlm toolkit and used it in the processor which increased our accuracy on online ASR. When using the model make sure that your speech input is sampled at 16Khz. Prior to the usage, you may need to install the below dependencies:
pip -q install pyctcdecode
python -m pip -q install pypi-kenlm
For testing you can use the hoster API at the hugging face (There are provided examples from common voice) it may take a while to transcribe the given voice. Or you can use bellow code for local run:
import tensorflow
import torchaudio
import torch
import numpy as np
from transformers import AutoProcessor, AutoModelForCTC
processor = AutoProcessor.from_pretrained("SLPL/Sharif-wav2vec2")
model = AutoModelForCTC.from_pretrained("SLPL/Sharif-wav2vec2")
speech_array, sampling_rate = torchaudio.load("path/to/your.wav")
speech_array = speech_array.squeeze().numpy()
features = processor(
speech_array,
sampling_rate=processor.feature_extractor.sampling_rate,
return_tensors="pt",
padding=True)
with torch.no_grad():
logits = model(
features.input_values,
attention_mask=features.attention_mask).logits
prediction = processor.batch_decode(logits.numpy()).text
print(prediction[0])
# تست
Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli
Abstract
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
Usage
To transcribe Persian audio files the model can be used as a standalone acoustic model as follows:
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
# load model and tokenizer
processor = Wav2Vec2Processor.from_pretrained("SLPL/Sharif-wav2vec2")
model = Wav2Vec2ForCTC.from_pretrained("SLPL/Sharif-wav2vec2")
# load dummy dataset and read soundfiles
# ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# tokenize
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
Evaluation
This code snippet shows how to evaluate facebook/wav2vec2-base-960h on LibriSpeech's "clean" and "other" test data.
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
def map_to_pred(batch):
input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"])
print("WER:", wer(result["text"], result["transcription"]))
Result (WER):
"clean" | "other" |
---|---|
3.4 | 8.6 |