language: fa
datasets:
- common_voice_6_1
tags:
- audio
- automatic-speech-recognition
license: mit
widget:
- example_title: Common Voice Sample 1
src: >-
https://datasets-server.huggingface.co/assets/common_voice/--/fa/train/0/audio/audio.mp3
- example_title: Common Voice Sample 2
src: >-
https://datasets-server.huggingface.co/assets/common_voice/--/fa/train/1/audio/audio.mp3
model-index:
- name: Sharif-wav2vec2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Corpus 6.1 (clean)
type: common_voice_6_1
config: clean
split: test
args:
language: fa
metrics:
- name: Test WER
type: wer
value: 6
Sharif-wav2vec2
This is a fine-tuned version of Sharif Wav2vec2 for Farsi. The base model went through a fine-tuning process in which 108 hours of Commonvoice's Farsi samples with a sampling rate equal to 16kHz. Afterward, we trained a 5gram using kenlm toolkit and used it in the processor which increased our accuracy on online ASR.
Usage
When using the model, ensure that your speech input is sampled at 16Khz. Prior to the usage, you may need to install the below dependencies:
pip install pyctcdecode
pip install pypi-kenlm
For testing you can use the hosted inference API at the hugging face (There are provided examples from common-voice) it may take a while to transcribe the given voice. Or you can use the bellow code for a local run:
import tensorflow
import torchaudio
import torch
import numpy as np
from transformers import AutoProcessor, AutoModelForCTC
processor = AutoProcessor.from_pretrained("SLPL/Sharif-wav2vec2")
model = AutoModelForCTC.from_pretrained("SLPL/Sharif-wav2vec2")
speech_array, sampling_rate = torchaudio.load("path/to/your.wav")
speech_array = speech_array.squeeze().numpy()
features = processor(
speech_array,
sampling_rate=processor.feature_extractor.sampling_rate,
return_tensors="pt",
padding=True)
with torch.no_grad():
logits = model(
features.input_values,
attention_mask=features.attention_mask).logits
prediction = processor.batch_decode(logits.numpy()).text
print(prediction[0])
# تست
Evaluation
For the evaluation, you can use the code below. Ensure your dataset to be in following form in order to avoid any further conflict:
path | reference |
---|---|
path/to/audio_file.wav | "TRANSCRIPTION" |
also, make sure you have installed pip install jiwer
prior to running.
import tensorflow
import torchaudio
import torch
import librosa
from datasets import load_dataset,load_metric
import numpy as np
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from transformers import Wav2Vec2ProcessorWithLM
model = Wav2Vec2ForCTC.from_pretrained("SLPL/Sharif-wav2vec2")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("SLPL/Sharif-wav2vec2")
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(
np.asarray(speech_array),
sampling_rate,
processor.feature_extractor.sampling_rate)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(
batch["speech"],
sampling_rate=processor.feature_extractor.sampling_rate,
return_tensors="pt",
padding=True
)
with torch.no_grad():
logits = model(
features.input_values,
attention_mask=features.attention_mask).logits
batch["prediction"] = processor.batch_decode(logits.numpy()).text
return batch
dataset = load_dataset(
"csv",
data_files={"test":"dataset.eval.csv"},
delimiter=",")["test"]
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict, batched=True, batch_size=4)
wer = load_metric("wer")
print("WER: {:.2f}".format(wer.compute(
predictions=result["prediction"],
references=result["reference"])))
Result (WER) on common-voice 6.1:
cleaned | other |
---|---|
0.06 | 0.16 |
Citation
If you want to cite this model you can use this:
?
Contributions
Thanks to @sadrasabouri and @sarasadeghii for adding this dataset.