BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from SQAI/bge-embedding-model. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: SQAI/bge-embedding-model
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("SQAI/bge-embedding-model2")
sentences = [
'errors.controllerFault.lowLoadCurrent',
'"Can you provide me with the current status of the streetlight on \'street name\', specifically in relation to its voltage under load, whether it\'s lower than expected and how that might be indicating potential electrical issues? Could you also give me insight into the current drawn by the streetlight, whether or not the relay is currently on or off, and if there are any faults in the lux module that may affect light level sensing and control? Moreover, could you tell me the type of dimming schedule applied, the ambient light level detected in lux, the total energy consumed so far recorded in kilowatt-hours, and the lower voltage threshold for this streetlight\'s efficient operation?"',
'"Can you show me the current status of the relay in the streetlights located at the X-coordinate grid, highlighting any faults in the lux module that might be affecting light level sensing and control? Also, could you provide information on the current dimming level of these streetlights in operation, the type of dimming schedule applied, and whether the voltage is within the upper limit considered safe and efficient for their operation?"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0 |
cosine_accuracy@3 |
0.0 |
cosine_accuracy@5 |
0.0 |
cosine_accuracy@10 |
0.0144 |
cosine_precision@1 |
0.0 |
cosine_precision@3 |
0.0 |
cosine_precision@5 |
0.0 |
cosine_precision@10 |
0.0014 |
cosine_recall@1 |
0.0 |
cosine_recall@3 |
0.0 |
cosine_recall@5 |
0.0 |
cosine_recall@10 |
0.0144 |
cosine_ndcg@10 |
0.0043 |
cosine_mrr@10 |
0.0015 |
cosine_map@100 |
0.0059 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0 |
cosine_accuracy@3 |
0.0 |
cosine_accuracy@5 |
0.0 |
cosine_accuracy@10 |
0.0144 |
cosine_precision@1 |
0.0 |
cosine_precision@3 |
0.0 |
cosine_precision@5 |
0.0 |
cosine_precision@10 |
0.0014 |
cosine_recall@1 |
0.0 |
cosine_recall@3 |
0.0 |
cosine_recall@5 |
0.0 |
cosine_recall@10 |
0.0144 |
cosine_ndcg@10 |
0.0043 |
cosine_mrr@10 |
0.0015 |
cosine_map@100 |
0.0059 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0 |
cosine_accuracy@3 |
0.0 |
cosine_accuracy@5 |
0.0 |
cosine_accuracy@10 |
0.0144 |
cosine_precision@1 |
0.0 |
cosine_precision@3 |
0.0 |
cosine_precision@5 |
0.0 |
cosine_precision@10 |
0.0014 |
cosine_recall@1 |
0.0 |
cosine_recall@3 |
0.0 |
cosine_recall@5 |
0.0 |
cosine_recall@10 |
0.0144 |
cosine_ndcg@10 |
0.0044 |
cosine_mrr@10 |
0.0016 |
cosine_map@100 |
0.0057 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0 |
cosine_accuracy@3 |
0.0 |
cosine_accuracy@5 |
0.0 |
cosine_accuracy@10 |
0.0096 |
cosine_precision@1 |
0.0 |
cosine_precision@3 |
0.0 |
cosine_precision@5 |
0.0 |
cosine_precision@10 |
0.001 |
cosine_recall@1 |
0.0 |
cosine_recall@3 |
0.0 |
cosine_recall@5 |
0.0 |
cosine_recall@10 |
0.0096 |
cosine_ndcg@10 |
0.003 |
cosine_mrr@10 |
0.0012 |
cosine_map@100 |
0.0052 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0 |
cosine_accuracy@3 |
0.0 |
cosine_accuracy@5 |
0.0 |
cosine_accuracy@10 |
0.0192 |
cosine_precision@1 |
0.0 |
cosine_precision@3 |
0.0 |
cosine_precision@5 |
0.0 |
cosine_precision@10 |
0.0019 |
cosine_recall@1 |
0.0 |
cosine_recall@3 |
0.0 |
cosine_recall@5 |
0.0 |
cosine_recall@10 |
0.0192 |
cosine_ndcg@10 |
0.006 |
cosine_mrr@10 |
0.0023 |
cosine_map@100 |
0.0052 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,865 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 5 tokens
- mean: 7.68 tokens
- max: 14 tokens
|
- min: 17 tokens
- mean: 89.79 tokens
- max: 187 tokens
|
- Samples:
positive |
anchor |
threshold.lowLoadVoltage |
"What is the maximum current level above which it is considered unsafe for a specific streetlight in my area, what is the minimum longitude of the geographic area this streetlight covers, is this streetlight's control mode automated or manually controlled, also, can you provide the delta or width of the grid area occupied by this group of streetlights, what is the level of AC voltage supply to this streetlight, what's the lower voltage threshold below which this streetlight may not operate efficiently, how many times has this streetlight been switched on, what is the minimum operational voltage under load conditions, and finally, what is the latitude of this streetlight?" |
asset.id |
"Could you please tell me the scheduled dimming settings for the string stored streetlights, troubleshoot why these streetlights remain on during daylight hours, and confirm if this could be due to sensor faults? Also, I'd like to know the identifier for the parent group to which this group of streetlights belongs, and the IMEI number of the streetlight device." |
errors.controllerFault.highPower |
"Can you provide an analysis of the efficiency of power usage by examining the power factor of the streetlights, especially in areas of the grid with high Y-coordinates, highlight instances where power consumption is significantly higher than expected which may indicate faults, identify situations where voltage under load is above safe levels, and assess if there are any problems with our central control system's ability to manage streetlight groups?" |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
Unnamed Dataset
- Size: 208 evaluation samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 5 tokens
- mean: 7.55 tokens
- max: 14 tokens
|
- min: 19 tokens
- mean: 90.69 tokens
- max: 187 tokens
|
- Samples:
positive |
anchor |
log.controlModeSwitch |
"Can you provide the control mode switch identifier used for changing the default dimming level set for a specific group of streetlights, identified by their unique identifier, considering the time taken for the streetlight to activate or light up from the command, and possibly troubleshoot why the power consumption is lower than expected which could be due to hardware issues, quite possibly due to the relay responsible for turning the streetlight on and off sticking?" |
errors.controllerFault.luxModuleFault |
"Can you provide the timestamp of the last update to the threshold settings, and detail any faults in the lux module related to light level sensing and control for the streetlight on this specific street name? I also want to know the longitude of the streetlight. And also, can you tell me what type of dimming schedule is applied to the streetlight, the type of port used for its dimming controls, and the total energy it has consumed, recorded in kilowatt-hours. Lastly, could you also provide the timestamp of the recorded streetlighting error, and confirm the status of the relay responsible for turning this streetlight on and off, as I am suspecting it might be sticking?" |
threshold.lowLoadCurrent |
"What is the maximum safe voltage under load conditions for the city's streetlights, and do we possess the necessary rights to link these streetlights for synchronized control? Could you provide me with the timestamp of the latest data or action performed by our streetlights, and tell me the lower lux level threshold at which we would need to consider additional lighting? How often does each streetlight send a data report in normal operation, and what is the minimum load current level where we might start seeing suboptimal functioning? Have we been experiencing any problems with managing groups of streetlights via the central control system? Also, has there been any instances where the current under load was excessively high, indicating possible overloads, or situations where the operation temperature was belo normal limits due to environmental conditions? Lastly, have there been any noted communication issues between the streetlight's driver and the control system?" |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-06
weight_decay
: 0.03
num_train_epochs
: 200
lr_scheduler_type
: cosine
warmup_ratio
: 0.2
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-06
weight_decay
: 0.03
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 200
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.2
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.2712 |
1 |
13.2713 |
- |
- |
- |
- |
- |
- |
0.5424 |
2 |
13.2895 |
- |
- |
- |
- |
- |
- |
0.8136 |
3 |
9.9139 |
- |
- |
- |
- |
- |
- |
1.0847 |
4 |
5.6117 |
- |
- |
- |
- |
- |
- |
1.3559 |
5 |
4.7571 |
- |
- |
- |
- |
- |
- |
1.6271 |
6 |
5.5215 |
- |
- |
- |
- |
- |
- |
1.8983 |
7 |
5.7945 |
- |
- |
- |
- |
- |
- |
2.1695 |
8 |
5.7064 |
- |
- |
- |
- |
- |
- |
2.4407 |
9 |
5.6794 |
- |
- |
- |
- |
- |
- |
2.7119 |
10 |
5.7384 |
- |
- |
- |
- |
- |
- |
2.9831 |
11 |
5.6081 |
- |
- |
- |
- |
- |
- |
3.2542 |
12 |
5.5278 |
- |
- |
- |
- |
- |
- |
3.5254 |
13 |
5.149 |
- |
- |
- |
- |
- |
- |
3.7966 |
14 |
5.5904 |
5.6043 |
0.0081 |
0.0072 |
0.0079 |
0.0055 |
0.0079 |
1.0169 |
15 |
3.9458 |
- |
- |
- |
- |
- |
- |
1.2881 |
16 |
13.3653 |
- |
- |
- |
- |
- |
- |
1.5593 |
17 |
13.4413 |
- |
- |
- |
- |
- |
- |
1.8305 |
18 |
9.4188 |
- |
- |
- |
- |
- |
- |
2.1017 |
19 |
5.717 |
- |
- |
- |
- |
- |
- |
2.3729 |
20 |
5.2455 |
- |
- |
- |
- |
- |
- |
2.6441 |
21 |
5.2117 |
- |
- |
- |
- |
- |
- |
2.9153 |
22 |
5.5217 |
- |
- |
- |
- |
- |
- |
3.1864 |
23 |
5.6725 |
- |
- |
- |
- |
- |
- |
3.4576 |
24 |
5.786 |
- |
- |
- |
- |
- |
- |
3.7288 |
25 |
5.6507 |
- |
- |
- |
- |
- |
- |
4.0 |
26 |
5.7215 |
- |
- |
- |
- |
- |
- |
4.2712 |
27 |
5.3999 |
- |
- |
- |
- |
- |
- |
4.5424 |
28 |
5.4275 |
- |
- |
- |
- |
- |
- |
4.8136 |
29 |
5.7143 |
5.5718 |
0.0082 |
0.0071 |
0.0077 |
0.0052 |
0.0077 |
2.0339 |
30 |
4.478 |
- |
- |
- |
- |
- |
- |
2.3051 |
31 |
13.1821 |
- |
- |
- |
- |
- |
- |
2.5763 |
32 |
13.2473 |
- |
- |
- |
- |
- |
- |
2.8475 |
33 |
8.8654 |
- |
- |
- |
- |
- |
- |
3.1186 |
34 |
5.3181 |
- |
- |
- |
- |
- |
- |
3.3898 |
35 |
5.2091 |
- |
- |
- |
- |
- |
- |
3.6610 |
36 |
5.6027 |
- |
- |
- |
- |
- |
- |
3.9322 |
37 |
5.6839 |
- |
- |
- |
- |
- |
- |
4.2034 |
38 |
5.5955 |
- |
- |
- |
- |
- |
- |
4.4746 |
39 |
5.5786 |
- |
- |
- |
- |
- |
- |
4.7458 |
40 |
5.4509 |
- |
- |
- |
- |
- |
- |
5.0169 |
41 |
5.3361 |
- |
- |
- |
- |
- |
- |
5.2881 |
42 |
5.1608 |
- |
- |
- |
- |
- |
- |
5.5593 |
43 |
5.4896 |
- |
- |
- |
- |
- |
- |
5.8305 |
44 |
5.6466 |
5.5241 |
0.0062 |
0.0070 |
0.0076 |
0.0095 |
0.0076 |
3.0508 |
45 |
4.5617 |
- |
- |
- |
- |
- |
- |
3.3220 |
46 |
13.0665 |
- |
- |
- |
- |
- |
- |
3.5932 |
47 |
13.1848 |
- |
- |
- |
- |
- |
- |
3.8644 |
48 |
8.4053 |
- |
- |
- |
- |
- |
- |
4.1356 |
49 |
5.2706 |
- |
- |
- |
- |
- |
- |
4.4068 |
50 |
5.4269 |
- |
- |
- |
- |
- |
- |
4.6780 |
51 |
5.3645 |
- |
- |
- |
- |
- |
- |
4.9492 |
52 |
5.3587 |
- |
- |
- |
- |
- |
- |
5.2203 |
53 |
5.1047 |
- |
- |
- |
- |
- |
- |
5.4915 |
54 |
5.743 |
- |
- |
- |
- |
- |
- |
5.7627 |
55 |
5.3754 |
- |
- |
- |
- |
- |
- |
6.0339 |
56 |
5.3021 |
- |
- |
- |
- |
- |
- |
6.3051 |
57 |
5.6983 |
- |
- |
- |
- |
- |
- |
6.5763 |
58 |
5.302 |
- |
- |
- |
- |
- |
- |
6.8475 |
59 |
5.4545 |
5.4638 |
0.0060 |
0.0070 |
0.0077 |
0.0094 |
0.0077 |
4.0678 |
60 |
5.2213 |
- |
- |
- |
- |
- |
- |
4.3390 |
61 |
12.9854 |
- |
- |
- |
- |
- |
- |
4.6102 |
62 |
13.207 |
- |
- |
- |
- |
- |
- |
4.8814 |
63 |
7.7493 |
- |
- |
- |
- |
- |
- |
5.1525 |
64 |
5.3787 |
- |
- |
- |
- |
- |
- |
5.4237 |
65 |
4.9406 |
- |
- |
- |
- |
- |
- |
5.6949 |
66 |
5.3963 |
- |
- |
- |
- |
- |
- |
5.9661 |
67 |
5.3429 |
- |
- |
- |
- |
- |
- |
6.2373 |
68 |
5.292 |
- |
- |
- |
- |
- |
- |
6.5085 |
69 |
5.6738 |
- |
- |
- |
- |
- |
- |
6.7797 |
70 |
5.5927 |
- |
- |
- |
- |
- |
- |
7.0508 |
71 |
5.5245 |
- |
- |
- |
- |
- |
- |
7.3220 |
72 |
4.8334 |
- |
- |
- |
- |
- |
- |
7.5932 |
73 |
5.2015 |
- |
- |
- |
- |
- |
- |
7.8644 |
74 |
5.5393 |
5.3954 |
0.0060 |
0.0071 |
0.0078 |
0.0094 |
0.0078 |
5.0847 |
75 |
5.6168 |
- |
- |
- |
- |
- |
- |
5.3559 |
76 |
12.8678 |
- |
- |
- |
- |
- |
- |
5.6271 |
77 |
13.2377 |
- |
- |
- |
- |
- |
- |
5.8983 |
78 |
7.1882 |
- |
- |
- |
- |
- |
- |
6.1695 |
79 |
5.1293 |
- |
- |
- |
- |
- |
- |
6.4407 |
80 |
4.9413 |
- |
- |
- |
- |
- |
- |
6.7119 |
81 |
5.1763 |
- |
- |
- |
- |
- |
- |
6.9831 |
82 |
4.9512 |
- |
- |
- |
- |
- |
- |
7.2542 |
83 |
5.2744 |
- |
- |
- |
- |
- |
- |
7.5254 |
84 |
5.0573 |
- |
- |
- |
- |
- |
- |
7.7966 |
85 |
5.1938 |
- |
- |
- |
- |
- |
- |
8.0678 |
86 |
5.1514 |
- |
- |
- |
- |
- |
- |
8.3390 |
87 |
4.9808 |
- |
- |
- |
- |
- |
- |
8.6102 |
88 |
4.9983 |
- |
- |
- |
- |
- |
- |
8.8814 |
89 |
5.3211 |
5.3268 |
0.0062 |
0.0067 |
0.0075 |
0.0095 |
0.0075 |
6.1017 |
90 |
6.1513 |
- |
- |
- |
- |
- |
- |
6.3729 |
91 |
12.7972 |
- |
- |
- |
- |
- |
- |
6.6441 |
92 |
13.0051 |
- |
- |
- |
- |
- |
- |
6.9153 |
93 |
6.551 |
- |
- |
- |
- |
- |
- |
7.1864 |
94 |
4.6644 |
- |
- |
- |
- |
- |
- |
7.4576 |
95 |
4.8619 |
- |
- |
- |
- |
- |
- |
7.7288 |
96 |
5.0812 |
- |
- |
- |
- |
- |
- |
8.0 |
97 |
4.758 |
- |
- |
- |
- |
- |
- |
8.2712 |
98 |
5.1362 |
- |
- |
- |
- |
- |
- |
8.5424 |
99 |
5.5405 |
- |
- |
- |
- |
- |
- |
8.8136 |
100 |
5.228 |
- |
- |
- |
- |
- |
- |
9.0847 |
101 |
5.1084 |
- |
- |
- |
- |
- |
- |
9.3559 |
102 |
5.1574 |
- |
- |
- |
- |
- |
- |
9.6271 |
103 |
5.3326 |
- |
- |
- |
- |
- |
- |
9.8983 |
104 |
5.34 |
5.2658 |
0.0060 |
0.0066 |
0.0076 |
0.0052 |
0.0076 |
7.1186 |
105 |
6.5789 |
- |
- |
- |
- |
- |
- |
7.3898 |
106 |
12.7557 |
- |
- |
- |
- |
- |
- |
7.6610 |
107 |
13.0203 |
- |
- |
- |
- |
- |
- |
7.9322 |
108 |
5.7148 |
- |
- |
- |
- |
- |
- |
8.2034 |
109 |
4.7945 |
- |
- |
- |
- |
- |
- |
8.4746 |
110 |
4.5926 |
- |
- |
- |
- |
- |
- |
8.7458 |
111 |
4.6727 |
- |
- |
- |
- |
- |
- |
9.0169 |
112 |
5.0886 |
- |
- |
- |
- |
- |
- |
9.2881 |
113 |
5.0562 |
- |
- |
- |
- |
- |
- |
9.5593 |
114 |
5.2167 |
- |
- |
- |
- |
- |
- |
9.8305 |
115 |
5.048 |
- |
- |
- |
- |
- |
- |
10.1017 |
116 |
4.7765 |
- |
- |
- |
- |
- |
- |
10.3729 |
117 |
4.9875 |
- |
- |
- |
- |
- |
- |
10.6441 |
118 |
4.9501 |
- |
- |
- |
- |
- |
- |
10.9153 |
119 |
4.756 |
5.2124 |
0.0057 |
0.0065 |
0.0075 |
0.0054 |
0.0075 |
8.1356 |
120 |
6.9381 |
- |
- |
- |
- |
- |
- |
8.4068 |
121 |
12.7916 |
- |
- |
- |
- |
- |
- |
8.6780 |
122 |
12.8517 |
- |
- |
- |
- |
- |
- |
8.9492 |
123 |
5.51 |
- |
- |
- |
- |
- |
- |
9.2203 |
124 |
4.686 |
- |
- |
- |
- |
- |
- |
9.4915 |
125 |
4.6611 |
- |
- |
- |
- |
- |
- |
9.7627 |
126 |
5.2767 |
- |
- |
- |
- |
- |
- |
10.0339 |
127 |
4.6103 |
- |
- |
- |
- |
- |
- |
10.3051 |
128 |
4.957 |
- |
- |
- |
- |
- |
- |
10.5763 |
129 |
5.0236 |
- |
- |
- |
- |
- |
- |
10.8475 |
130 |
5.0894 |
- |
- |
- |
- |
- |
- |
11.1186 |
131 |
4.7025 |
- |
- |
- |
- |
- |
- |
11.3898 |
132 |
5.0765 |
- |
- |
- |
- |
- |
- |
11.6610 |
133 |
4.6601 |
- |
- |
- |
- |
- |
- |
11.9322 |
134 |
4.9064 |
5.1731 |
0.0056 |
0.0060 |
0.0070 |
0.0054 |
0.0070 |
9.1525 |
135 |
7.5884 |
- |
- |
- |
- |
- |
- |
9.4237 |
136 |
12.679 |
- |
- |
- |
- |
- |
- |
9.6949 |
137 |
12.417 |
- |
- |
- |
- |
- |
- |
9.9661 |
138 |
5.1632 |
- |
- |
- |
- |
- |
- |
10.2373 |
139 |
4.9486 |
- |
- |
- |
- |
- |
- |
10.5085 |
140 |
4.6341 |
- |
- |
- |
- |
- |
- |
10.7797 |
141 |
4.9664 |
- |
- |
- |
- |
- |
- |
11.0508 |
142 |
4.9567 |
- |
- |
- |
- |
- |
- |
11.3220 |
143 |
4.7532 |
- |
- |
- |
- |
- |
- |
11.5932 |
144 |
5.2556 |
- |
- |
- |
- |
- |
- |
11.8644 |
145 |
4.9652 |
- |
- |
- |
- |
- |
- |
12.1356 |
146 |
4.8118 |
- |
- |
- |
- |
- |
- |
12.4068 |
147 |
4.704 |
- |
- |
- |
- |
- |
- |
12.6780 |
148 |
4.8922 |
- |
- |
- |
- |
- |
- |
12.9492 |
149 |
4.6571 |
5.1441 |
0.0061 |
0.0055 |
0.0064 |
0.0053 |
0.0064 |
10.1695 |
150 |
8.1284 |
- |
- |
- |
- |
- |
- |
10.4407 |
151 |
12.5703 |
- |
- |
- |
- |
- |
- |
10.7119 |
152 |
11.8696 |
- |
- |
- |
- |
- |
- |
10.9831 |
153 |
4.8543 |
- |
- |
- |
- |
- |
- |
11.2542 |
154 |
4.8099 |
- |
- |
- |
- |
- |
- |
11.5254 |
155 |
4.7009 |
- |
- |
- |
- |
- |
- |
11.7966 |
156 |
4.7986 |
- |
- |
- |
- |
- |
- |
12.0678 |
157 |
4.7973 |
- |
- |
- |
- |
- |
- |
12.3390 |
158 |
4.5529 |
- |
- |
- |
- |
- |
- |
12.6102 |
159 |
5.0275 |
- |
- |
- |
- |
- |
- |
12.8814 |
160 |
4.6675 |
- |
- |
- |
- |
- |
- |
13.1525 |
161 |
4.6538 |
- |
- |
- |
- |
- |
- |
13.4237 |
162 |
4.8355 |
- |
- |
- |
- |
- |
- |
13.6949 |
163 |
4.6304 |
- |
- |
- |
- |
- |
- |
13.9661 |
164 |
4.7047 |
5.1242 |
0.0064 |
0.0054 |
0.0064 |
0.0095 |
0.0064 |
11.1864 |
165 |
8.6549 |
- |
- |
- |
- |
- |
- |
11.4576 |
166 |
12.4788 |
- |
- |
- |
- |
- |
- |
11.7288 |
167 |
11.6425 |
- |
- |
- |
- |
- |
- |
12.0 |
168 |
4.5654 |
- |
- |
- |
- |
- |
- |
12.2712 |
169 |
4.7016 |
- |
- |
- |
- |
- |
- |
12.5424 |
170 |
4.3306 |
- |
- |
- |
- |
- |
- |
12.8136 |
171 |
4.9692 |
- |
- |
- |
- |
- |
- |
13.0847 |
172 |
4.7557 |
- |
- |
- |
- |
- |
- |
13.3559 |
173 |
4.8665 |
- |
- |
- |
- |
- |
- |
13.6271 |
174 |
4.8338 |
- |
- |
- |
- |
- |
- |
13.8983 |
175 |
4.9221 |
- |
- |
- |
- |
- |
- |
14.1695 |
176 |
4.4968 |
- |
- |
- |
- |
- |
- |
14.4407 |
177 |
4.6104 |
- |
- |
- |
- |
- |
- |
14.7119 |
178 |
4.8449 |
- |
- |
- |
- |
- |
- |
14.9831 |
179 |
4.2392 |
5.1123 |
0.0059 |
0.0055 |
0.0065 |
0.0094 |
0.0065 |
12.2034 |
180 |
9.4893 |
- |
- |
- |
- |
- |
- |
12.4746 |
181 |
12.4241 |
- |
- |
- |
- |
- |
- |
12.7458 |
182 |
11.0389 |
- |
- |
- |
- |
- |
- |
13.0169 |
183 |
4.7595 |
- |
- |
- |
- |
- |
- |
13.2881 |
184 |
4.5408 |
- |
- |
- |
- |
- |
- |
13.5593 |
185 |
4.6108 |
- |
- |
- |
- |
- |
- |
13.8305 |
186 |
4.5832 |
- |
- |
- |
- |
- |
- |
14.1017 |
187 |
4.6741 |
- |
- |
- |
- |
- |
- |
14.3729 |
188 |
4.9353 |
- |
- |
- |
- |
- |
- |
14.6441 |
189 |
5.0511 |
- |
- |
- |
- |
- |
- |
14.9153 |
190 |
4.6575 |
- |
- |
- |
- |
- |
- |
15.1864 |
191 |
4.648 |
- |
- |
- |
- |
- |
- |
15.4576 |
192 |
4.6224 |
- |
- |
- |
- |
- |
- |
15.7288 |
193 |
4.9292 |
- |
- |
- |
- |
- |
- |
16.0 |
194 |
3.7805 |
5.1058 |
0.0063 |
0.0057 |
0.0062 |
0.0094 |
0.0062 |
13.2203 |
195 |
10.2695 |
- |
- |
- |
- |
- |
- |
13.4915 |
196 |
12.5043 |
- |
- |
- |
- |
- |
- |
13.7627 |
197 |
10.4795 |
- |
- |
- |
- |
- |
- |
14.0339 |
198 |
4.6901 |
- |
- |
- |
- |
- |
- |
14.3051 |
199 |
4.6538 |
- |
- |
- |
- |
- |
- |
14.5763 |
200 |
4.4736 |
- |
- |
- |
- |
- |
- |
14.8475 |
201 |
4.4383 |
- |
- |
- |
- |
- |
- |
15.1186 |
202 |
5.0382 |
- |
- |
- |
- |
- |
- |
15.3898 |
203 |
4.5636 |
- |
- |
- |
- |
- |
- |
15.6610 |
204 |
4.8089 |
- |
- |
- |
- |
- |
- |
15.9322 |
205 |
4.4746 |
- |
- |
- |
- |
- |
- |
16.2034 |
206 |
4.5876 |
- |
- |
- |
- |
- |
- |
16.4746 |
207 |
4.4972 |
- |
- |
- |
- |
- |
- |
16.7458 |
208 |
4.8569 |
- |
- |
- |
- |
- |
- |
17.0169 |
209 |
3.5883 |
5.1031 |
0.0059 |
0.0057 |
0.0061 |
0.0095 |
0.0061 |
14.2373 |
210 |
10.8988 |
- |
- |
- |
- |
- |
- |
14.5085 |
211 |
12.4944 |
- |
- |
- |
- |
- |
- |
14.7797 |
212 |
10.1041 |
- |
- |
- |
- |
- |
- |
15.0508 |
213 |
4.8811 |
- |
- |
- |
- |
- |
- |
15.3220 |
214 |
4.6292 |
- |
- |
- |
- |
- |
- |
15.5932 |
215 |
4.4828 |
- |
- |
- |
- |
- |
- |
15.8644 |
216 |
4.7588 |
- |
- |
- |
- |
- |
- |
16.1356 |
217 |
4.26 |
- |
- |
- |
- |
- |
- |
16.4068 |
218 |
4.9124 |
- |
- |
- |
- |
- |
- |
16.6780 |
219 |
4.8098 |
- |
- |
- |
- |
- |
- |
16.9492 |
220 |
4.4439 |
- |
- |
- |
- |
- |
- |
17.2203 |
221 |
4.4824 |
- |
- |
- |
- |
- |
- |
17.4915 |
222 |
4.7771 |
- |
- |
- |
- |
- |
- |
17.7627 |
223 |
4.5966 |
- |
- |
- |
- |
- |
- |
18.0339 |
224 |
3.1409 |
5.1009 |
0.0055 |
0.0057 |
0.0062 |
0.0052 |
0.0062 |
15.2542 |
225 |
11.657 |
- |
- |
- |
- |
- |
- |
15.5254 |
226 |
12.5032 |
- |
- |
- |
- |
- |
- |
15.7966 |
227 |
9.4495 |
- |
- |
- |
- |
- |
- |
16.0678 |
228 |
4.7099 |
- |
- |
- |
- |
- |
- |
16.3390 |
229 |
4.6049 |
- |
- |
- |
- |
- |
- |
16.6102 |
230 |
4.6311 |
- |
- |
- |
- |
- |
- |
16.8814 |
231 |
4.7562 |
- |
- |
- |
- |
- |
- |
17.1525 |
232 |
4.7195 |
- |
- |
- |
- |
- |
- |
17.4237 |
233 |
4.8557 |
- |
- |
- |
- |
- |
- |
17.6949 |
234 |
4.8423 |
- |
- |
- |
- |
- |
- |
17.9661 |
235 |
4.5764 |
- |
- |
- |
- |
- |
- |
18.2373 |
236 |
4.5081 |
- |
- |
- |
- |
- |
- |
18.5085 |
237 |
4.7974 |
- |
- |
- |
- |
- |
- |
18.7797 |
238 |
4.871 |
- |
- |
- |
- |
- |
- |
19.0508 |
239 |
2.8558 |
5.1020 |
0.0054 |
0.0057 |
0.0061 |
0.0054 |
0.0061 |
16.2712 |
240 |
12.4297 |
- |
- |
- |
- |
- |
- |
16.5424 |
241 |
12.5186 |
- |
- |
- |
- |
- |
- |
16.8136 |
242 |
8.8827 |
- |
- |
- |
- |
- |
- |
17.0847 |
243 |
4.8406 |
- |
- |
- |
- |
- |
- |
17.3559 |
244 |
4.4367 |
- |
- |
- |
- |
- |
- |
17.6271 |
245 |
4.5996 |
- |
- |
- |
- |
- |
- |
17.8983 |
246 |
4.6692 |
- |
- |
- |
- |
- |
- |
18.1695 |
247 |
4.6498 |
- |
- |
- |
- |
- |
- |
18.4407 |
248 |
4.7211 |
- |
- |
- |
- |
- |
- |
18.7119 |
249 |
4.7675 |
- |
- |
- |
- |
- |
- |
18.9831 |
250 |
4.4405 |
- |
- |
- |
- |
- |
- |
19.2542 |
251 |
4.6778 |
- |
- |
- |
- |
- |
- |
19.5254 |
252 |
4.6674 |
- |
- |
- |
- |
- |
- |
19.7966 |
253 |
4.735 |
5.1036 |
0.0054 |
0.0056 |
0.0060 |
0.0054 |
0.0060 |
17.0169 |
254 |
3.6188 |
- |
- |
- |
- |
- |
- |
17.2881 |
255 |
12.4112 |
- |
- |
- |
- |
- |
- |
17.5593 |
256 |
12.5261 |
- |
- |
- |
- |
- |
- |
17.8305 |
257 |
8.3408 |
- |
- |
- |
- |
- |
- |
18.1017 |
258 |
4.6496 |
- |
- |
- |
- |
- |
- |
18.3729 |
259 |
4.7177 |
- |
- |
- |
- |
- |
- |
18.6441 |
260 |
4.7956 |
- |
- |
- |
- |
- |
- |
18.9153 |
261 |
4.7228 |
- |
- |
- |
- |
- |
- |
19.1864 |
262 |
4.6083 |
- |
- |
- |
- |
- |
- |
19.4576 |
263 |
4.7985 |
- |
- |
- |
- |
- |
- |
19.7288 |
264 |
4.6675 |
- |
- |
- |
- |
- |
- |
20.0 |
265 |
4.6353 |
- |
- |
- |
- |
- |
- |
20.2712 |
266 |
4.5717 |
- |
- |
- |
- |
- |
- |
20.5424 |
267 |
4.4358 |
- |
- |
- |
- |
- |
- |
20.8136 |
268 |
4.8288 |
5.1030 |
0.0056 |
0.0057 |
0.0062 |
0.0053 |
0.0062 |
18.0339 |
269 |
3.7877 |
- |
- |
- |
- |
- |
- |
18.3051 |
270 |
12.4042 |
- |
- |
- |
- |
- |
- |
18.5763 |
271 |
12.4793 |
- |
- |
- |
- |
- |
- |
18.8475 |
272 |
7.9475 |
- |
- |
- |
- |
- |
- |
19.1186 |
273 |
4.5502 |
- |
- |
- |
- |
- |
- |
19.3898 |
274 |
4.5565 |
- |
- |
- |
- |
- |
- |
19.6610 |
275 |
4.4172 |
- |
- |
- |
- |
- |
- |
19.9322 |
276 |
4.5319 |
- |
- |
- |
- |
- |
- |
20.2034 |
277 |
4.5635 |
- |
- |
- |
- |
- |
- |
20.4746 |
278 |
4.5233 |
- |
- |
- |
- |
- |
- |
20.7458 |
279 |
4.6766 |
- |
- |
- |
- |
- |
- |
21.0169 |
280 |
4.5863 |
- |
- |
- |
- |
- |
- |
21.2881 |
281 |
4.5784 |
- |
- |
- |
- |
- |
- |
21.5593 |
282 |
4.7198 |
- |
- |
- |
- |
- |
- |
21.8305 |
283 |
4.7383 |
5.1065 |
0.0054 |
0.0056 |
0.0061 |
0.0050 |
0.0061 |
19.0508 |
284 |
4.4257 |
- |
- |
- |
- |
- |
- |
19.3220 |
285 |
12.3475 |
- |
- |
- |
- |
- |
- |
19.5932 |
286 |
12.5168 |
- |
- |
- |
- |
- |
- |
19.8644 |
287 |
7.3671 |
- |
- |
- |
- |
- |
- |
20.1356 |
288 |
4.3771 |
- |
- |
- |
- |
- |
- |
20.4068 |
289 |
4.542 |
- |
- |
- |
- |
- |
- |
20.6780 |
290 |
4.3629 |
- |
- |
- |
- |
- |
- |
20.9492 |
291 |
4.5474 |
- |
- |
- |
- |
- |
- |
21.2203 |
292 |
4.7436 |
- |
- |
- |
- |
- |
- |
21.4915 |
293 |
4.5915 |
- |
- |
- |
- |
- |
- |
21.7627 |
294 |
4.5522 |
- |
- |
- |
- |
- |
- |
22.0339 |
295 |
4.6591 |
- |
- |
- |
- |
- |
- |
22.3051 |
296 |
4.6179 |
- |
- |
- |
- |
- |
- |
22.5763 |
297 |
4.6086 |
- |
- |
- |
- |
- |
- |
22.8475 |
298 |
4.8808 |
5.1083 |
0.0054 |
0.0057 |
0.0062 |
0.0055 |
0.0062 |
20.0678 |
299 |
4.7358 |
- |
- |
- |
- |
- |
- |
20.3390 |
300 |
12.3209 |
- |
- |
- |
- |
- |
- |
20.6102 |
301 |
12.6406 |
- |
- |
- |
- |
- |
- |
20.8814 |
302 |
6.7971 |
- |
- |
- |
- |
- |
- |
21.1525 |
303 |
4.3723 |
- |
- |
- |
- |
- |
- |
21.4237 |
304 |
4.61 |
- |
- |
- |
- |
- |
- |
21.6949 |
305 |
4.4624 |
- |
- |
- |
- |
- |
- |
21.9661 |
306 |
4.6145 |
- |
- |
- |
- |
- |
- |
22.2373 |
307 |
4.5794 |
- |
- |
- |
- |
- |
- |
22.5085 |
308 |
4.6625 |
- |
- |
- |
- |
- |
- |
22.7797 |
309 |
4.5499 |
- |
- |
- |
- |
- |
- |
23.0508 |
310 |
4.5657 |
- |
- |
- |
- |
- |
- |
23.3220 |
311 |
4.5896 |
- |
- |
- |
- |
- |
- |
23.5932 |
312 |
4.5692 |
- |
- |
- |
- |
- |
- |
23.8644 |
313 |
4.93 |
5.1119 |
0.0055 |
0.0057 |
0.0061 |
0.0056 |
0.0061 |
21.0847 |
314 |
5.3829 |
- |
- |
- |
- |
- |
- |
21.3559 |
315 |
12.3422 |
- |
- |
- |
- |
- |
- |
21.6271 |
316 |
12.601 |
- |
- |
- |
- |
- |
- |
21.8983 |
317 |
6.5062 |
- |
- |
- |
- |
- |
- |
22.1695 |
318 |
4.4681 |
- |
- |
- |
- |
- |
- |
22.4407 |
319 |
4.4244 |
- |
- |
- |
- |
- |
- |
22.7119 |
320 |
4.4514 |
- |
- |
- |
- |
- |
- |
22.9831 |
321 |
4.5469 |
- |
- |
- |
- |
- |
- |
23.2542 |
322 |
4.6924 |
- |
- |
- |
- |
- |
- |
23.5254 |
323 |
4.682 |
- |
- |
- |
- |
- |
- |
23.7966 |
324 |
4.6403 |
- |
- |
- |
- |
- |
- |
24.0678 |
325 |
4.6272 |
- |
- |
- |
- |
- |
- |
24.3390 |
326 |
4.3605 |
- |
- |
- |
- |
- |
- |
24.6102 |
327 |
4.5992 |
- |
- |
- |
- |
- |
- |
24.8814 |
328 |
4.6776 |
5.1126 |
0.0053 |
0.0057 |
0.0061 |
0.0056 |
0.0061 |
22.1017 |
329 |
5.8504 |
- |
- |
- |
- |
- |
- |
22.3729 |
330 |
12.335 |
- |
- |
- |
- |
- |
- |
22.6441 |
331 |
12.5779 |
- |
- |
- |
- |
- |
- |
22.9153 |
332 |
5.7261 |
- |
- |
- |
- |
- |
- |
23.1864 |
333 |
4.5411 |
- |
- |
- |
- |
- |
- |
23.4576 |
334 |
4.4783 |
- |
- |
- |
- |
- |
- |
23.7288 |
335 |
4.5589 |
- |
- |
- |
- |
- |
- |
24.0 |
336 |
4.6305 |
- |
- |
- |
- |
- |
- |
24.2712 |
337 |
4.674 |
- |
- |
- |
- |
- |
- |
24.5424 |
338 |
4.7455 |
- |
- |
- |
- |
- |
- |
24.8136 |
339 |
4.6011 |
- |
- |
- |
- |
- |
- |
25.0847 |
340 |
4.5899 |
- |
- |
- |
- |
- |
- |
25.3559 |
341 |
4.3981 |
- |
- |
- |
- |
- |
- |
25.6271 |
342 |
4.7031 |
- |
- |
- |
- |
- |
- |
25.8983 |
343 |
4.68 |
5.1182 |
0.0054 |
0.0057 |
0.0059 |
0.0056 |
0.0059 |
23.1186 |
344 |
6.3521 |
- |
- |
- |
- |
- |
- |
23.3898 |
345 |
12.2283 |
- |
- |
- |
- |
- |
- |
23.6610 |
346 |
12.533 |
- |
- |
- |
- |
- |
- |
23.9322 |
347 |
5.2654 |
- |
- |
- |
- |
- |
- |
24.2034 |
348 |
4.3667 |
- |
- |
- |
- |
- |
- |
24.4746 |
349 |
4.4718 |
- |
- |
- |
- |
- |
- |
24.7458 |
350 |
4.6212 |
- |
- |
- |
- |
- |
- |
25.0169 |
351 |
4.447 |
- |
- |
- |
- |
- |
- |
25.2881 |
352 |
4.6247 |
- |
- |
- |
- |
- |
- |
25.5593 |
353 |
5.0093 |
- |
- |
- |
- |
- |
- |
25.8305 |
354 |
4.6316 |
- |
- |
- |
- |
- |
- |
26.1017 |
355 |
4.6655 |
- |
- |
- |
- |
- |
- |
26.3729 |
356 |
4.5964 |
- |
- |
- |
- |
- |
- |
26.6441 |
357 |
4.682 |
- |
- |
- |
- |
- |
- |
26.9153 |
358 |
4.6375 |
5.1205 |
0.0051 |
0.0056 |
0.0059 |
0.0055 |
0.0059 |
24.1356 |
359 |
6.727 |
- |
- |
- |
- |
- |
- |
24.4068 |
360 |
12.3706 |
- |
- |
- |
- |
- |
- |
24.6780 |
361 |
12.4755 |
- |
- |
- |
- |
- |
- |
24.9492 |
362 |
4.623 |
- |
- |
- |
- |
- |
- |
25.2203 |
363 |
4.2947 |
- |
- |
- |
- |
- |
- |
25.4915 |
364 |
4.3993 |
- |
- |
- |
- |
- |
- |
25.7627 |
365 |
4.4148 |
- |
- |
- |
- |
- |
- |
26.0339 |
366 |
4.2376 |
- |
- |
- |
- |
- |
- |
26.3051 |
367 |
4.6334 |
- |
- |
- |
- |
- |
- |
26.5763 |
368 |
4.7007 |
- |
- |
- |
- |
- |
- |
26.8475 |
369 |
4.3542 |
- |
- |
- |
- |
- |
- |
27.1186 |
370 |
4.7036 |
- |
- |
- |
- |
- |
- |
27.3898 |
371 |
4.2382 |
- |
- |
- |
- |
- |
- |
27.6610 |
372 |
4.5011 |
- |
- |
- |
- |
- |
- |
27.9322 |
373 |
4.6292 |
5.1241 |
0.0051 |
0.0056 |
0.0059 |
0.0056 |
0.0059 |
25.1525 |
374 |
7.3562 |
- |
- |
- |
- |
- |
- |
25.4237 |
375 |
12.2926 |
- |
- |
- |
- |
- |
- |
25.6949 |
376 |
12.1694 |
- |
- |
- |
- |
- |
- |
25.9661 |
377 |
4.7183 |
- |
- |
- |
- |
- |
- |
26.2373 |
378 |
4.4099 |
- |
- |
- |
- |
- |
- |
26.5085 |
379 |
4.3366 |
- |
- |
- |
- |
- |
- |
26.7797 |
380 |
4.4848 |
- |
- |
- |
- |
- |
- |
27.0508 |
381 |
4.6947 |
- |
- |
- |
- |
- |
- |
27.3220 |
382 |
4.5683 |
- |
- |
- |
- |
- |
- |
27.5932 |
383 |
4.7691 |
- |
- |
- |
- |
- |
- |
27.8644 |
384 |
4.3879 |
- |
- |
- |
- |
- |
- |
28.1356 |
385 |
4.3461 |
- |
- |
- |
- |
- |
- |
28.4068 |
386 |
4.4756 |
- |
- |
- |
- |
- |
- |
28.6780 |
387 |
4.5355 |
- |
- |
- |
- |
- |
- |
28.9492 |
388 |
4.4837 |
5.1278 |
0.0052 |
0.0056 |
0.0059 |
0.0054 |
0.0059 |
26.1695 |
389 |
7.9407 |
- |
- |
- |
- |
- |
- |
26.4407 |
390 |
12.3054 |
- |
- |
- |
- |
- |
- |
26.7119 |
391 |
11.6158 |
- |
- |
- |
- |
- |
- |
26.9831 |
392 |
4.5724 |
- |
- |
- |
- |
- |
- |
27.2542 |
393 |
4.467 |
- |
- |
- |
- |
- |
- |
27.5254 |
394 |
4.4395 |
- |
- |
- |
- |
- |
- |
27.7966 |
395 |
4.4111 |
- |
- |
- |
- |
- |
- |
28.0678 |
396 |
4.5565 |
- |
- |
- |
- |
- |
- |
28.3390 |
397 |
4.6063 |
- |
- |
- |
- |
- |
- |
28.6102 |
398 |
4.5312 |
- |
- |
- |
- |
- |
- |
28.8814 |
399 |
4.5436 |
- |
- |
- |
- |
- |
- |
29.1525 |
400 |
4.5366 |
- |
- |
- |
- |
- |
- |
29.4237 |
401 |
4.4488 |
- |
- |
- |
- |
- |
- |
29.6949 |
402 |
4.5641 |
- |
- |
- |
- |
- |
- |
29.9661 |
403 |
4.2491 |
5.1303 |
0.0053 |
0.0057 |
0.0060 |
0.0055 |
0.0060 |
27.1864 |
404 |
8.574 |
- |
- |
- |
- |
- |
- |
27.4576 |
405 |
12.2836 |
- |
- |
- |
- |
- |
- |
27.7288 |
406 |
11.1935 |
- |
- |
- |
- |
- |
- |
28.0 |
407 |
4.5464 |
- |
- |
- |
- |
- |
- |
28.2712 |
408 |
4.3132 |
- |
- |
- |
- |
- |
- |
28.5424 |
409 |
4.3553 |
- |
- |
- |
- |
- |
- |
28.8136 |
410 |
4.4679 |
- |
- |
- |
- |
- |
- |
29.0847 |
411 |
4.7705 |
- |
- |
- |
- |
- |
- |
29.3559 |
412 |
4.5667 |
- |
- |
- |
- |
- |
- |
29.6271 |
413 |
4.6547 |
- |
- |
- |
- |
- |
- |
29.8983 |
414 |
4.6709 |
- |
- |
- |
- |
- |
- |
30.1695 |
415 |
4.784 |
- |
- |
- |
- |
- |
- |
30.4407 |
416 |
4.4368 |
- |
- |
- |
- |
- |
- |
30.7119 |
417 |
4.6159 |
- |
- |
- |
- |
- |
- |
30.9831 |
418 |
4.0117 |
5.1322 |
0.0050 |
0.0057 |
0.0059 |
0.0054 |
0.0059 |
28.2034 |
419 |
9.2905 |
- |
- |
- |
- |
- |
- |
28.4746 |
420 |
12.2439 |
- |
- |
- |
- |
- |
- |
28.7458 |
421 |
10.722 |
- |
- |
- |
- |
- |
- |
29.0169 |
422 |
4.6608 |
- |
- |
- |
- |
- |
- |
29.2881 |
423 |
4.5196 |
- |
- |
- |
- |
- |
- |
29.5593 |
424 |
4.4313 |
- |
- |
- |
- |
- |
- |
29.8305 |
425 |
4.513 |
- |
- |
- |
- |
- |
- |
30.1017 |
426 |
4.5812 |
- |
- |
- |
- |
- |
- |
30.3729 |
427 |
4.5275 |
- |
- |
- |
- |
- |
- |
30.6441 |
428 |
4.8022 |
- |
- |
- |
- |
- |
- |
30.9153 |
429 |
4.5171 |
- |
- |
- |
- |
- |
- |
31.1864 |
430 |
4.5968 |
- |
- |
- |
- |
- |
- |
31.4576 |
431 |
4.2145 |
- |
- |
- |
- |
- |
- |
31.7288 |
432 |
4.7041 |
- |
- |
- |
- |
- |
- |
32.0 |
433 |
3.6187 |
5.1356 |
0.0051 |
0.0057 |
0.0059 |
0.0055 |
0.0059 |
29.2203 |
434 |
10.0897 |
- |
- |
- |
- |
- |
- |
29.4915 |
435 |
12.2909 |
- |
- |
- |
- |
- |
- |
29.7627 |
436 |
10.1362 |
- |
- |
- |
- |
- |
- |
30.0339 |
437 |
4.5172 |
- |
- |
- |
- |
- |
- |
30.3051 |
438 |
4.3273 |
- |
- |
- |
- |
- |
- |
30.5763 |
439 |
4.5272 |
- |
- |
- |
- |
- |
- |
30.8475 |
440 |
4.376 |
- |
- |
- |
- |
- |
- |
31.1186 |
441 |
4.5803 |
- |
- |
- |
- |
- |
- |
31.3898 |
442 |
4.5654 |
- |
- |
- |
- |
- |
- |
31.6610 |
443 |
4.5024 |
- |
- |
- |
- |
- |
- |
31.9322 |
444 |
4.5889 |
- |
- |
- |
- |
- |
- |
32.2034 |
445 |
4.6489 |
- |
- |
- |
- |
- |
- |
32.4746 |
446 |
4.4505 |
- |
- |
- |
- |
- |
- |
32.7458 |
447 |
4.7026 |
- |
- |
- |
- |
- |
- |
33.0169 |
448 |
3.4719 |
5.1368 |
0.0050 |
0.0056 |
0.0059 |
0.0052 |
0.0059 |
30.2373 |
449 |
10.7633 |
- |
- |
- |
- |
- |
- |
30.5085 |
450 |
12.3203 |
- |
- |
- |
- |
- |
- |
30.7797 |
451 |
9.7535 |
- |
- |
- |
- |
- |
- |
31.0508 |
452 |
4.7462 |
- |
- |
- |
- |
- |
- |
31.3220 |
453 |
4.4271 |
- |
- |
- |
- |
- |
- |
31.5932 |
454 |
4.4347 |
- |
- |
- |
- |
- |
- |
31.8644 |
455 |
4.6443 |
- |
- |
- |
- |
- |
- |
32.1356 |
456 |
4.6344 |
- |
- |
- |
- |
- |
- |
32.4068 |
457 |
4.6518 |
- |
- |
- |
- |
- |
- |
32.6780 |
458 |
4.6437 |
- |
- |
- |
- |
- |
- |
32.9492 |
459 |
4.6168 |
- |
- |
- |
- |
- |
- |
33.2203 |
460 |
4.4948 |
- |
- |
- |
- |
- |
- |
33.4915 |
461 |
4.5268 |
- |
- |
- |
- |
- |
- |
33.7627 |
462 |
4.4844 |
- |
- |
- |
- |
- |
- |
34.0339 |
463 |
3.276 |
5.1384 |
0.0051 |
0.0057 |
0.0060 |
0.0053 |
0.0060 |
31.2542 |
464 |
11.5311 |
- |
- |
- |
- |
- |
- |
31.5254 |
465 |
12.3812 |
- |
- |
- |
- |
- |
- |
31.7966 |
466 |
9.1499 |
- |
- |
- |
- |
- |
- |
32.0678 |
467 |
4.7032 |
- |
- |
- |
- |
- |
- |
32.3390 |
468 |
4.2429 |
- |
- |
- |
- |
- |
- |
32.6102 |
469 |
4.549 |
- |
- |
- |
- |
- |
- |
32.8814 |
470 |
4.7083 |
- |
- |
- |
- |
- |
- |
33.1525 |
471 |
4.5348 |
- |
- |
- |
- |
- |
- |
33.4237 |
472 |
4.472 |
- |
- |
- |
- |
- |
- |
33.6949 |
473 |
4.5818 |
- |
- |
- |
- |
- |
- |
33.9661 |
474 |
4.5534 |
- |
- |
- |
- |
- |
- |
34.2373 |
475 |
4.5743 |
- |
- |
- |
- |
- |
- |
34.5085 |
476 |
4.54 |
- |
- |
- |
- |
- |
- |
34.7797 |
477 |
4.681 |
- |
- |
- |
- |
- |
- |
35.0508 |
478 |
2.9902 |
5.1397 |
0.0052 |
0.0057 |
0.0059 |
0.0053 |
0.0059 |
32.2712 |
479 |
12.3174 |
- |
- |
- |
- |
- |
- |
32.5424 |
480 |
12.2996 |
- |
- |
- |
- |
- |
- |
32.8136 |
481 |
8.7153 |
- |
- |
- |
- |
- |
- |
33.0847 |
482 |
4.5692 |
- |
- |
- |
- |
- |
- |
33.3559 |
483 |
4.3255 |
- |
- |
- |
- |
- |
- |
33.6271 |
484 |
4.4515 |
- |
- |
- |
- |
- |
- |
33.8983 |
485 |
4.6708 |
- |
- |
- |
- |
- |
- |
34.1695 |
486 |
4.2648 |
- |
- |
- |
- |
- |
- |
34.4407 |
487 |
4.6268 |
- |
- |
- |
- |
- |
- |
34.7119 |
488 |
4.703 |
- |
- |
- |
- |
- |
- |
34.9831 |
489 |
4.6269 |
- |
- |
- |
- |
- |
- |
35.2542 |
490 |
4.6464 |
- |
- |
- |
- |
- |
- |
35.5254 |
491 |
4.4952 |
- |
- |
- |
- |
- |
- |
35.7966 |
492 |
4.6097 |
5.1406 |
0.0052 |
0.0058 |
0.0058 |
0.0054 |
0.0058 |
33.0169 |
493 |
3.2718 |
- |
- |
- |
- |
- |
- |
33.2881 |
494 |
12.3329 |
- |
- |
- |
- |
- |
- |
33.5593 |
495 |
12.3503 |
- |
- |
- |
- |
- |
- |
33.8305 |
496 |
8.1544 |
- |
- |
- |
- |
- |
- |
34.1017 |
497 |
4.4684 |
- |
- |
- |
- |
- |
- |
34.3729 |
498 |
4.4062 |
- |
- |
- |
- |
- |
- |
34.6441 |
499 |
4.2644 |
- |
- |
- |
- |
- |
- |
34.9153 |
500 |
4.5294 |
- |
- |
- |
- |
- |
- |
35.1864 |
501 |
4.673 |
- |
- |
- |
- |
- |
- |
35.4576 |
502 |
4.4884 |
- |
- |
- |
- |
- |
- |
35.7288 |
503 |
4.5989 |
- |
- |
- |
- |
- |
- |
36.0 |
504 |
4.6182 |
- |
- |
- |
- |
- |
- |
36.2712 |
505 |
4.6487 |
- |
- |
- |
- |
- |
- |
36.5424 |
506 |
4.6436 |
- |
- |
- |
- |
- |
- |
36.8136 |
507 |
4.6059 |
5.1417 |
0.0051 |
0.0057 |
0.0059 |
0.0052 |
0.0059 |
34.0339 |
508 |
3.7589 |
- |
- |
- |
- |
- |
- |
34.3051 |
509 |
12.2815 |
- |
- |
- |
- |
- |
- |
34.5763 |
510 |
12.5481 |
- |
- |
- |
- |
- |
- |
34.8475 |
511 |
7.6339 |
- |
- |
- |
- |
- |
- |
35.1186 |
512 |
4.5528 |
- |
- |
- |
- |
- |
- |
35.3898 |
513 |
4.3266 |
- |
- |
- |
- |
- |
- |
35.6610 |
514 |
4.3093 |
- |
- |
- |
- |
- |
- |
35.9322 |
515 |
4.7401 |
- |
- |
- |
- |
- |
- |
36.2034 |
516 |
4.523 |
- |
- |
- |
- |
- |
- |
36.4746 |
517 |
4.5255 |
- |
- |
- |
- |
- |
- |
36.7458 |
518 |
4.5058 |
- |
- |
- |
- |
- |
- |
37.0169 |
519 |
4.5614 |
- |
- |
- |
- |
- |
- |
37.2881 |
520 |
4.5323 |
- |
- |
- |
- |
- |
- |
37.5593 |
521 |
4.5739 |
- |
- |
- |
- |
- |
- |
37.8305 |
522 |
4.6501 |
5.1427 |
0.0052 |
0.0058 |
0.0059 |
0.0053 |
0.0059 |
35.0508 |
523 |
4.2083 |
- |
- |
- |
- |
- |
- |
35.3220 |
524 |
12.2888 |
- |
- |
- |
- |
- |
- |
35.5932 |
525 |
12.4709 |
- |
- |
- |
- |
- |
- |
35.8644 |
526 |
7.3926 |
- |
- |
- |
- |
- |
- |
36.1356 |
527 |
4.4719 |
- |
- |
- |
- |
- |
- |
36.4068 |
528 |
4.5033 |
- |
- |
- |
- |
- |
- |
36.6780 |
529 |
4.388 |
- |
- |
- |
- |
- |
- |
36.9492 |
530 |
4.5606 |
- |
- |
- |
- |
- |
- |
37.2203 |
531 |
4.6936 |
- |
- |
- |
- |
- |
- |
37.4915 |
532 |
4.6008 |
- |
- |
- |
- |
- |
- |
37.7627 |
533 |
4.6973 |
- |
- |
- |
- |
- |
- |
38.0339 |
534 |
4.4194 |
- |
- |
- |
- |
- |
- |
38.3051 |
535 |
4.5616 |
- |
- |
- |
- |
- |
- |
38.5763 |
536 |
4.6307 |
- |
- |
- |
- |
- |
- |
38.8475 |
537 |
4.8322 |
5.1442 |
0.0051 |
0.0057 |
0.0059 |
0.0053 |
0.0059 |
36.0678 |
538 |
4.8388 |
- |
- |
- |
- |
- |
- |
36.3390 |
539 |
12.2334 |
- |
- |
- |
- |
- |
- |
36.6102 |
540 |
12.4205 |
- |
- |
- |
- |
- |
- |
36.8814 |
541 |
6.9051 |
- |
- |
- |
- |
- |
- |
37.1525 |
542 |
4.6011 |
- |
- |
- |
- |
- |
- |
37.4237 |
543 |
4.4701 |
- |
- |
- |
- |
- |
- |
37.6949 |
544 |
4.421 |
- |
- |
- |
- |
- |
- |
37.9661 |
545 |
4.6877 |
- |
- |
- |
- |
- |
- |
38.2373 |
546 |
4.6348 |
- |
- |
- |
- |
- |
- |
38.5085 |
547 |
4.5822 |
- |
- |
- |
- |
- |
- |
38.7797 |
548 |
4.5697 |
- |
- |
- |
- |
- |
- |
39.0508 |
549 |
4.3118 |
- |
- |
- |
- |
- |
- |
39.3220 |
550 |
4.5131 |
- |
- |
- |
- |
- |
- |
39.5932 |
551 |
4.4879 |
- |
- |
- |
- |
- |
- |
39.8644 |
552 |
4.5945 |
5.1429 |
0.0052 |
0.0056 |
0.0059 |
0.0054 |
0.0059 |
37.0847 |
553 |
5.4083 |
- |
- |
- |
- |
- |
- |
37.3559 |
554 |
12.2092 |
- |
- |
- |
- |
- |
- |
37.6271 |
555 |
12.5043 |
- |
- |
- |
- |
- |
- |
37.8983 |
556 |
6.1239 |
- |
- |
- |
- |
- |
- |
38.1695 |
557 |
4.2932 |
- |
- |
- |
- |
- |
- |
38.4407 |
558 |
4.3845 |
- |
- |
- |
- |
- |
- |
38.7119 |
559 |
4.5619 |
- |
- |
- |
- |
- |
- |
38.9831 |
560 |
4.6936 |
- |
- |
- |
- |
- |
- |
39.2542 |
561 |
4.6636 |
- |
- |
- |
- |
- |
- |
39.5254 |
562 |
4.7964 |
- |
- |
- |
- |
- |
- |
39.7966 |
563 |
4.613 |
- |
- |
- |
- |
- |
- |
40.0678 |
564 |
4.5856 |
- |
- |
- |
- |
- |
- |
40.3390 |
565 |
4.4605 |
- |
- |
- |
- |
- |
- |
40.6102 |
566 |
4.5461 |
- |
- |
- |
- |
- |
- |
40.8814 |
567 |
4.7145 |
5.1454 |
0.0052 |
0.0056 |
0.0059 |
0.0052 |
0.0059 |
38.1017 |
568 |
5.8311 |
- |
- |
- |
- |
- |
- |
38.3729 |
569 |
12.2142 |
- |
- |
- |
- |
- |
- |
38.6441 |
570 |
12.4489 |
- |
- |
- |
- |
- |
- |
38.9153 |
571 |
5.7328 |
- |
- |
- |
- |
- |
- |
39.1864 |
572 |
4.4402 |
- |
- |
- |
- |
- |
- |
39.4576 |
573 |
4.1806 |
- |
- |
- |
- |
- |
- |
39.7288 |
574 |
4.6327 |
- |
- |
- |
- |
- |
- |
40.0 |
575 |
4.2768 |
- |
- |
- |
- |
- |
- |
40.2712 |
576 |
4.4669 |
- |
- |
- |
- |
- |
- |
40.5424 |
577 |
4.8094 |
- |
- |
- |
- |
- |
- |
40.8136 |
578 |
4.5773 |
- |
- |
- |
- |
- |
- |
41.0847 |
579 |
4.439 |
- |
- |
- |
- |
- |
- |
41.3559 |
580 |
4.5718 |
- |
- |
- |
- |
- |
- |
41.6271 |
581 |
4.5955 |
- |
- |
- |
- |
- |
- |
41.8983 |
582 |
4.5043 |
5.1443 |
0.0051 |
0.0056 |
0.0059 |
0.0054 |
0.0059 |
39.1186 |
583 |
6.359 |
- |
- |
- |
- |
- |
- |
39.3898 |
584 |
12.212 |
- |
- |
- |
- |
- |
- |
39.6610 |
585 |
12.538 |
- |
- |
- |
- |
- |
- |
39.9322 |
586 |
5.0971 |
- |
- |
- |
- |
- |
- |
40.2034 |
587 |
4.4783 |
- |
- |
- |
- |
- |
- |
40.4746 |
588 |
4.394 |
- |
- |
- |
- |
- |
- |
40.7458 |
589 |
4.4847 |
- |
- |
- |
- |
- |
- |
41.0169 |
590 |
4.4116 |
- |
- |
- |
- |
- |
- |
41.2881 |
591 |
4.3979 |
- |
- |
- |
- |
- |
- |
41.5593 |
592 |
4.6652 |
- |
- |
- |
- |
- |
- |
41.8305 |
593 |
4.3939 |
- |
- |
- |
- |
- |
- |
42.1017 |
594 |
4.5555 |
- |
- |
- |
- |
- |
- |
42.3729 |
595 |
4.4966 |
- |
- |
- |
- |
- |
- |
42.6441 |
596 |
4.6267 |
- |
- |
- |
- |
- |
- |
42.9153 |
597 |
4.5834 |
5.1446 |
0.0051 |
0.0057 |
0.0058 |
0.0052 |
0.0058 |
40.1356 |
598 |
6.7009 |
- |
- |
- |
- |
- |
- |
40.4068 |
599 |
12.2755 |
- |
- |
- |
- |
- |
- |
40.6780 |
600 |
12.4465 |
5.1447 |
0.0052 |
0.0057 |
0.0059 |
0.0052 |
0.0059 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}