SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'log.alarmFault.waveringLightEmission',
'log.presetBrightnessPoint',
'log.maximumWattageBoundary',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 70,000 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 10.81 tokens
- max: 18 tokens
- min: 5 tokens
- mean: 10.1 tokens
- max: 17 tokens
- min: -0.0
- mean: 0.11
- max: 0.99
- Samples:
sentence1 sentence2 score log.temperatureMaximumLimit
schedule.daysWhenScheduleIsEffective
0.006032609194517136
device.DeviceTimeZone
maintenance.maintenanceModifications
0.011996420472860337
log.alarmFault.highAmps
log.currentLowerBoundary
0.20761280847788094
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 70,000 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 10.81 tokens
- max: 18 tokens
- min: 5 tokens
- mean: 10.1 tokens
- max: 17 tokens
- min: -0.0
- mean: 0.11
- max: 0.99
- Samples:
sentence1 sentence2 score log.temperatureMaximumLimit
schedule.daysWhenScheduleIsEffective
0.006032609194517136
device.DeviceTimeZone
maintenance.maintenanceModifications
0.011996420472860337
log.alarmFault.highAmps
log.currentLowerBoundary
0.20761280847788094
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 10warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.2286 | 1000 | 4.9688 | 4.1188 |
0.4571 | 2000 | 4.0956 | 3.9955 |
0.6857 | 3000 | 4.0295 | 3.8972 |
0.9143 | 4000 | 3.9616 | 3.8387 |
1.1429 | 5000 | 3.9073 | 3.7972 |
1.3714 | 6000 | 3.8188 | 3.7559 |
1.6 | 7000 | 3.7536 | 3.5798 |
1.8286 | 8000 | 3.6843 | 3.6076 |
2.0571 | 9000 | 3.6231 | 3.5363 |
2.2857 | 10000 | 3.5492 | 3.4779 |
2.5143 | 11000 | 3.5423 | 3.4188 |
2.7429 | 12000 | 3.4868 | 3.4221 |
2.9714 | 13000 | 3.4593 | 3.2962 |
3.2 | 14000 | 3.3957 | 3.3086 |
3.4286 | 15000 | 3.3801 | 3.2652 |
3.6571 | 16000 | 3.3501 | 3.2527 |
3.8857 | 17000 | 3.3117 | 3.2055 |
4.1143 | 18000 | 3.2396 | 3.1950 |
4.3429 | 19000 | 3.2424 | 3.1900 |
4.5714 | 20000 | 3.2185 | 3.1467 |
4.8 | 21000 | 3.2173 | 3.1315 |
5.0286 | 22000 | 3.2119 | 3.1175 |
5.2571 | 23000 | 3.1583 | 3.0700 |
5.4857 | 24000 | 3.1634 | 3.0862 |
5.7143 | 25000 | 3.1538 | 3.0367 |
5.9429 | 26000 | 3.1187 | 3.0292 |
6.1712 | 27000 | 3.0703 | 3.0349 |
6.3998 | 28000 | 3.0925 | 3.0017 |
6.6283 | 29000 | 3.0179 | 2.9847 |
6.8569 | 30000 | 3.0331 | 2.9622 |
7.0855 | 31000 | 3.0784 | 2.9761 |
7.3141 | 32000 | 3.0484 | 2.9501 |
7.5426 | 33000 | 3.0138 | 2.9397 |
7.7712 | 34000 | 2.9935 | 2.9322 |
7.9998 | 35000 | 2.9912 | 2.9247 |
8.2283 | 36000 | 2.9852 | 2.9069 |
8.4569 | 37000 | 2.946 | 2.9162 |
8.6855 | 38000 | 2.9503 | 2.9038 |
8.9141 | 39000 | 2.9759 | 2.8972 |
9.1426 | 40000 | 2.9413 | 2.8893 |
9.3712 | 41000 | 2.933 | 2.8878 |
9.5998 | 42000 | 2.918 | 2.8747 |
9.8283 | 43000 | 2.9427 | 2.8708 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.1
- Transformers: 4.48.0
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for SQAI/parent-column-model
Base model
sentence-transformers/all-mpnet-base-v2