Object Detection

SSD MobileNet v2 FPN-lite quantized

Use case : Object detection

Model description

The mobilenet-ssd model is a Single-Shot multibox Detection (SSD) network intended to perform object detection. Mobilenet-ssd is using MobileNetV2 as a backbone which is a general architecture that can be used for multiple use cases. Depending on the use case, it can use different input layer size and different width factors. This allows different width models to reduce the number of multiply-adds and thereby reduce inference cost on mobile devices.

The model is quantized in int8 using tensorflow lite converter.

Network information

The models are quantized using tensorflow lite converter.

Network inputs / outputs

For an image resolution of NxM and NC classes

Input Shape Description
(1, N, M, 3) Single NxM RGB image with UINT8 values between 0 and 255
Output Shape Description
(1, NA, 8 + NC) FLOAT values Where NA is thge number of anchors and NC is the number of classes

Recommended Platforms

Platform Supported Recommended
STM32L0 [] []
STM32L4 [] []
STM32U5 [] []
STM32H7 [x] [x]
STM32MP1 [x] [x]
STM32MP2 [x] [x]
STM32N6 [x] [x]

Performances

Metrics

Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.

Reference NPU memory footprint based on COCO Person dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Series Internal RAM (KiB) External RAM (KiB) Weights Flash (KiB) STM32Cube.AI version STEdgeAI Core version
SSD Mobilenet v2 0.35 FPN-lite COCO-Person Int8 192x192x3 STM32N6 606.49 0.0 1580.53 10.0.0 2.0.0
SSD Mobilenet v2 0.35 FPN-lite COCO-Person Int8 224x224x3 STM32N6 1314.67 0.0 1607.41 10.0.0 2.0.0
SSD Mobilenet v2 0.35 FPN-lite COCO-Person Int8 256x256x3 STM32N6 1959.06 0.0 1637.02 10.0.0 2.0.0
SSD Mobilenet v2 0.35 FPN-lite COCO-Person Int8 416x416x3 STM32N6 4570.03 0.0 1837.8 10.0.0 2.0.0

Reference NPU inference time based on COCO Person dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Board Execution Engine Inference time (ms) Inf / sec STM32Cube.AI version STEdgeAI Core version
SSD Mobilenet v2 0.35 FPN-lite COCO-Person Int8 192x192x3 STM32N6570-DK NPU/MCU 14.37 69.57 10.0.0 2.0.0
SSD Mobilenet v2 0.35 FPN-lite COCO-Person Int8 224x224x3 STM32N6570-DK NPU/MCU 18.15 55.10 10.0.0 2.0.0
SSD Mobilenet v2 0.35 FPN-lite COCO-Person Int8 256x256x3 STM32N6570-DK NPU/MCU 21.73 46.03 10.0.0 2.0.0
SSD Mobilenet v2 0.35 FPN-lite COCO-Person Int8 416x416x3 STM32N6570-DK NPU/MCU 114.12 8.76 10.0.0 2.0.0

Reference MCU memory footprint based on COCO Person dataset (see Accuracy for details on dataset)

Model Format Resolution Series Activation RAM (KiB) Runtime RAM (KiB) Weights Flash (KiB) Code Flash (KiB) Total RAM (KiB) Total Flash (KiB) STM32Cube.AI version
SSD Mobilenet v2 0.35 FPN-lite Int8 192x192x3 STM32H7 521.210.0.0 70.26 1098.76 192.69 591.46 1291.45 10.0.0
SSD Mobilenet v2 0.35 FPN-lite Int8 224x224x3 STM32H7 956.82 70.3 1120.63 192.84 1027.12 1313.47 10.0.0
SSD Mobilenet v2 0.35 FPN-lite Int8 256x256x3 STM32H7 1238.29 70.3 1145.24 192.81 1308.59 1338.05 10.0.0
SSD Mobilenet v2 0.35 FPN-lite Int8 416x416x3 STM32H7 2869.05 70.3 1321.02 193.23 2939.35 1514.25 10.0.0

Reference MCU inference time based on COCO Person dataset (see Accuracy for details on dataset)

Model Format Resolution Board Execution Engine Frequency Inference time (ms) STM32Cube.AI version
SSD Mobilenet v2 0.35 FPN-lite Int8 192x192x3 STM32H747I-DISCO 1 CPU 400 MHz 511.16 ms 10.0.0
SSD Mobilenet v2 0.35 FPN-lite Int8 224x224x3 STM32H747I-DISCO 1 CPU 400 MHz 673.19 ms 10.0.0
SSD Mobilenet v2 0.35 FPN-lite Int8 256x256x3 STM32H747I-DISCO 1 CPU 400 MHz 898.32 ms 10.0.0
SSD Mobilenet v2 0.35 FPN-lite Int8 416x416x3 STM32H747I-DISCO 1 CPU 400 MHz 2684.93 ms 10.0.0

Reference MPU inference time based on COCO Person dataset (see Accuracy for details on dataset)

Model Format Resolution Quantization Board Execution Engine Frequency Inference time (ms) %NPU %GPU %CPU X-LINUX-AI version Framework
SSD Mobilenet v2 0.35 FPN-lite Int8 192x192x3 per-channel** STM32MP257F-DK2 NPU/GPU 800 MHz 35.08 ms 6.20 93.80 0 v5.1.0 OpenVX
SSD Mobilenet v2 0.35 FPN-lite Int8 224x224x3 per-channel** STM32MP257F-DK2 NPU/GPU 800 MHz 48.92 ms 6.19 93.81 0 v5.1.0 OpenVX
SSD Mobilenet v2 0.35 FPN-lite Int8 256x256x3 per-channel** STM32MP257F-DK2 NPU/GPU 800 MHz 40.66 ms 7.07 92.93 0 v5.1.0 OpenVX
SSD Mobilenet v2 0.35 FPN-lite Int8 416x416x3 per-channel** STM32MP257F-DK2 NPU/GPU 800 MHz 110.4 ms 4.47 95.53 0 v5.1.0 OpenVX
SSD Mobilenet v2 0.35 FPN-lite Int8 192x192x3 per-channel STM32MP157F-DK2 2 CPU 800 MHz 193.70 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
SSD Mobilenet v2 0.35 FPN-lite Int8 224x224x3 per-channel STM32MP157F-DK2 2 CPU 800 MHz 263.60 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
SSD Mobilenet v2 0.35 FPN-lite Int8 256x256x3 per-channel STM32MP157F-DK2 2 CPU 800 MHz 339.40 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
SSD Mobilenet v2 0.35 FPN-lite Int8 416x416x3 per-channel STM32MP157F-DK2 2 CPU 800 MHz 894.00 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
SSD Mobilenet v2 0.35 FPN-lite Int8 192x192x3 per-channel STM32MP135F-DK2 1 CPU 1000 MHz 287.40 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
SSD Mobilenet v2 0.35 FPN-lite Int8 224x224x3 per-channel STM32MP135F-DK2 1 CPU 1000 MHz 383.40 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
SSD Mobilenet v2 0.35 FPN-lite Int8 256x256x3 per-channel STM32MP135F-DK2 1 CPU 1000 MHz 498.90 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
SSD Mobilenet v2 0.35 FPN-lite Int8 416x416x3 per-channel STM32MP135F-DK2 1 CPU 1000 MHz 1348.00 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0

Reference MPU inference time based on COCO 80 classes dataset (see Accuracy for details on dataset)

Model Format Resolution Quantization Board Execution Engine Frequency Inference time (ms) %NPU %GPU %CPU X-LINUX-AI version Framework
SSD Mobilenet v2 1.0 FPN-lite Int8 256x256x3 per-channel** STM32MP257F-DK2 NPU/GPU 800 MHz 100.90 ms 8.86 91.14 0 v5.1.0 OpenVX
SSD Mobilenet v2 1.0 FPN-lite Int8 416x416x3 per-channel** STM32MP257F-DK2 NPU/GPU 800 MHz 280.00 ms 8.68 91.32 0 v5.1.0 OpenVX
SSD Mobilenet v2 1.0 FPN-lite Int8 256x256x3 per-channel STM32MP157F-DK2 2 CPU 800 MHz 742.90 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
SSD Mobilenet v2 1.0 FPN-lite Int8 416x416x3 per-channel STM32MP157F-DK2 2 CPU 800 MHz 2000 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
SSD Mobilenet v2 1.0 FPN-lite Int8 256x256x3 per-channel STM32MP135F-DK2 1 CPU 1000 MHz 1112.00 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
SSD Mobilenet v2 1.0 FPN-lite Int8 416x416x3 per-channel STM32MP135F-DK2 1 CPU 1000 MHz 2986 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0

** To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization

AP on COCO Person dataset

Dataset details: link , License CC BY 4.0 , Quotation[1] , Number of classes: 80, Number of images: 118,287

Model Format Resolution AP*
SSD Mobilenet v2 0.35 FPN-lite Int8 192x192x3 40.7 %
SSD Mobilenet v2 0.35 FPN-lite Float 192x192x3 40.8 %
SSD Mobilenet v2 0.35 FPN-lite Int8 224x224x3 51.1 %
SSD Mobilenet v2 0.35 FPN-lite Float 224x224x3 51.7 %
SSD Mobilenet v2 0.35 FPN-lite Int8 256x256x3 58.3 %
SSD Mobilenet v2 0.35 FPN-lite Float 256x256x3 58.8 %
SSD Mobilenet v2 0.35 FPN-lite Int8 416x416x3 61.9 %
SSD Mobilenet v2 0.35 FPN-lite Float 416x416x3 62.6 %

* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001

AP on COCO 80 classes dataset

Dataset details: link , License CC BY 4.0 , Quotation[1] , Number of classes: 80, Number of images: 118,287

Model Format Resolution AP*
SSD Mobilenet v2 1.0 FPN-lite Int8 256x256x3 32.2 %
SSD Mobilenet v2 1.0 FPN-lite Float 256x256x3 32.6 %
SSD Mobilenet v2 1.0 FPN-lite Int8 416x416x3 32.3 %
SSD Mobilenet v2 1.0 FPN-lite Float 416x416x3 34.8 %

* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001

Retraining and Integration in a simple example:

Please refer to the stm32ai-modelzoo-services GitHub here

References

[1] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C.L., 2014. "Microsoft coco: Common objects in context". In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 (pp. 740-755). Springer International Publishing. [Online]. Available: https://cocodataset.org/#download.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .