metadata
license: mit
ChiMed-GPT
ChiMed-GPT is a Chinese medical large language model (LLM) that is built by continually training Ziya-v2 on Chinese medical data, where pre-training, supervised fine-tuning (SFT), and reinforcement learning from human feedback (RLHF) are performed.
More information about the model is coming soon.
Citation
If you use or extend our work, please cite the following paper:
@article{USTC-ChiMed-GPT,
title="{ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences}",
author={Yuanhe Tian, Ruyi Gan, Yan Song, Jiaxing Zhang, Yongdong Zhang},
journal={arXiv preprint arXiv:0000.00000},
year={2023},
}
Usage
from transformers import AutoTokenizer
from transformers import LlamaForCausalLM
import torch
query="[human]:感冒怎么处理?\n[bot]:"
model = LlamaForCausalLM.from_pretrained('SYNLP/ChiMed-GPT-1.0', torch_dtype=torch.float16, device_map="auto").eval()
tokenizer = AutoTokenizer.from_pretrained(ckpt)
input_ids = tokenizer(query, return_tensors="pt").input_ids.to('cuda:0')
generate_ids = model.generate(
input_ids,
max_new_tokens=512,
do_sample = True,
top_p = 0.9)
output = tokenizer.batch_decode(generate_ids)[0]
print(output)