Distribution Backtracking Builds A Faster Convergence Trajectory for One-step Diffusion Distillation,
Shengyuan Zhang1, Ling Yang2, Zejian Li*1, An Zhao1, Chenye Meng1, Changyuan Yang3, Guang Yang3, Zhiyuan Yang3, Lingyun Sun1
1Zhejiang University 2Peking University 3Alibaba Group*
Contact
Feel free to contact us if you have any questions about the paper!
Shengyuan Zhang zhangshengyuan@zju.edu.cn
Usage
For one-step text-to-image generation, DisBack can use the standard diffuser pipeline:
import torch
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
from huggingface_hub import hf_hub_download
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
repo_name = "SYZhang0805/DisBack"
ckpt_name = "SDXL_DisBack.bin"
unet = UNet2DConditionModel.from_config(base_model_id, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name), map_location="cuda"))
pipe = DiffusionPipeline.from_pretrained(base_model_id, unet=unet, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
prompt="A photo of a dog."
image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[399], height=1024, width=1024).images[0]
image.save('output.png', 'PNG')
For more details, please refer to our github repository
License
DisBack is released under MIT license
Citation
If you find our paper useful or relevant to your research, please kindly cite our papers:
@article{zhang2024distributionbacktrackingbuildsfaster,
title={Distribution Backtracking Builds A Faster Convergence Trajectory for One-step Diffusion Distillation},
author={Shengyuan Zhang and Ling Yang and Zejian Li and An Zhao and Chenye Meng and Changyuan Yang and Guang Yang and Zhiyuan Yang and Lingyun Sun},
journal={arXiv 2408.15991},
year={2024}
}
Credits
DisBack is highly built on the following amazing open-source projects:
DMD2: Improved Distribution Matching Distillation for Fast Image Synthesis
Diff-Instruct: Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models
ScoreGAN: Unifying GANs and Score-Based Diffusion as Generative Particle Models
Thanks to the maintainers of these projects for their contribution to this project!
- Downloads last month
- 8