license: apache-2.0
mask_token: <mask>
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-nepali
results: []
widget:
- text: >-
मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ।
परिवर्तनशिल जलवायुले खाध, सुरक्षा, <mask>, जमिन, मौसमलगायतलाई असंख्य
तरिकाले प्रभावित छ।
example_title: Example 1
- text: >-
अचेल विद्यालय र कलेजहरूले स्मारिका कत्तिको प्रकाशन गर्छन्, यकिन छैन । केही
वर्षपहिलेसम्म गाउँसहरका सानाठूला <mask> संस्थाहरूमा पुग्दा शिक्षक वा
कर्मचारीले संस्थाबाट प्रकाशित पत्रिका, स्मारिका र पुस्तक कोसेलीका रूपमा
थमाउँथे ।
example_title: Example 2
- text: >-
जलविद्युत् विकासको ११० वर्षको इतिहास बनाएको नेपालमा हाल सरकारी र निजी
क्षेत्रबाट गरी करिब २ हजार मेगावाट <mask> उत्पादन भइरहेको छ ।
example_title: Example 3
distilbert-base-nepali
This model is pre-trained on nepalitext dataset consisting of over 13 million Nepali text sequences using a masked language modeling (MLM) objective. Our approach trains a Sentence Piece Model (SPM) for text tokenization similar to XLM-ROBERTa and trains distilbert model for language modeling.
It achieves the following results on the evaluation set:
mlm probability | evaluation loss | evaluation perplexity |
---|---|---|
15% | 2.439 | 11.459 |
20% | 2.605 | 13.351 |
Model description
Refer to original distilbert-base-uncased
Intended uses & limitations
This backbone model intends to be fine-tuned on Nepali language focused downstream task such as sequence classification, token classification or question answering. The language model being trained on a data with texts grouped to a block size of 512, it handles text sequence up to 512 tokens and may not perform satisfactorily on shorter sequences.
Usage
This model can be used directly with a pipeline for masked language modeling:
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='Sakonii/distilbert-base-nepali')
>>> unmasker("मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, <mask>, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।")
[{'score': 0.04128897562623024,
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, मौसम, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
'token': 2605,
'token_str': 'मौसम'},
{'score': 0.04100276157259941,
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, प्रकृति, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
'token': 2792,
'token_str': 'प्रकृति'},
{'score': 0.026525357738137245,
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, पानी, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
'token': 387,
'token_str': 'पानी'},
{'score': 0.02340106852352619,
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, जल, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
'token': 1313,
'token_str': 'जल'},
{'score': 0.02055591531097889,
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, वातावरण, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
'token': 790,
'token_str': 'वातावरण'}]
Here is how we can use the model to get the features of a given text in PyTorch:
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained('Sakonii/distilbert-base-nepali')
model = AutoModelForMaskedLM.from_pretrained('Sakonii/distilbert-base-nepali')
# prepare input
text = "चाहिएको text यता राख्नु होला।"
encoded_input = tokenizer(text, return_tensors='pt')
# forward pass
output = model(**encoded_input)
Training data
This model is trained on nepalitext language modeling dataset which combines the datasets: OSCAR , cc100 and a set of scraped Nepali articles on Wikipedia. As for training the language model, the texts in the training set are grouped to a block of 512 tokens.
Tokenization
A Sentence Piece Model (SPM) is trained on a subset of nepalitext dataset for text tokenization. The tokenizer trained with vocab-size=24576, min-frequency=4, limit-alphabet=1000 and model-max-length=512.
Training procedure
The model is trained with the same configuration as the original distilbert-base-uncased; 512 tokens per instance, 28 instances per batch, and around 35.7K training steps.
Training hyperparameters
The following hyperparameters were used for training of the final epoch: [ Refer to the Training results table below for varying hyperparameters every epoch ]
- learning_rate: 5e-05
- train_batch_size: 28
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
The model is trained for 4 epochs with varying hyperparameters:
Training Loss | Epoch | MLM Probability | Train Batch Size | Step | Validation Loss | Perplexity |
---|---|---|---|---|---|---|
3.4477 | 1.0 | 15 | 26 | 38864 | 3.3067 | 27.2949 |
2.9451 | 2.0 | 15 | 28 | 35715 | 2.8238 | 16.8407 |
2.866 | 3.0 | 20 | 28 | 35715 | 2.7431 | 15.5351 |
2.7287 | 4.0 | 20 | 28 | 35715 | 2.6053 | 13.5353 |
Final model evaluated with MLM Probability of 15%:
Training Loss | Epoch | MLM Probability | Train Batch Size | Step | Validation Loss | Perplexity |
---|---|---|---|---|---|---|
- | - | 15 | - | - | 2.4388 | 11.4589 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.9.1
- Datasets 1.18.3
- Tokenizers 0.10.3