File size: 15,405 Bytes
8b55b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d0405b
8b55b6a
5d0405b
 
8b55b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import random
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import torchvision.transforms.functional as F
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
    CenterCrop, ColorJitter, Grayscale
import numbers
import torch    
import ast
import math
import numpy as np
from PIL import Image
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_utils import ImageInput
from transformers.utils import TensorType

from utils import expand2square

    
class Blip3ImageProcessor(BaseImageProcessor):
    
    def __init__(
        self,
        do_resize: bool = True,
        resize_mode: str = "squash",
        interpolation_mode: str = "bicubic",
        size: Union[Tuple[int, int], List[int]] = None,
        grids: Optional[List[int]] = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.do_resize = do_resize
        self.resize_mode = resize_mode
        self.interpolation_mode = interpolation_mode
        self.size = size if size is not None else (384, 384)
        self.grids = grids if grids is not None else [[384, 768],[768, 384],[768, 768],[1152, 384],[384,1152]]

        self.image_mean = image_mean if image_mean is not None else [0.5, 0.5, 0.5]
        self.image_std = image_std if image_std is not None else [0.5, 0.5, 0.5]
            
    
    @classmethod
    def resize(cls, image_size, resize_mode, interpolation='bicubic', fill_color=0):
        interpolation_mode = InterpolationMode.BILINEAR if interpolation == 'bilinear' else InterpolationMode.BICUBIC
        if resize_mode == 'longest':
            transforms = [
                ResizeKeepRatio(image_size, interpolation=interpolation_mode, longest=1),
                CenterCropOrPad(image_size, fill=fill_color)
            ]
        elif resize_mode == 'squash':
            if isinstance(image_size, int):
                image_size = (image_size, image_size)
            transforms = [
                Resize(image_size, interpolation=interpolation_mode),
            ]
        else:
            assert resize_mode == 'shortest'
            if not isinstance(image_size, (tuple, list)):
                image_size = (image_size, image_size)
            if image_size[0] == image_size[1]:
                # simple case, use torchvision built-in Resize w/ shortest edge mode (scalar size arg)
                transforms = [
                    Resize(image_size[0], interpolation=interpolation_mode)
                ]
            else:
                # resize shortest edge to matching target dim for non-square target
                transforms = [ResizeKeepRatio(image_size)]
            transforms += [CenterCrop(image_size)]
        return transforms
    
    @classmethod
    def convert_rgb(cls, image):
        return image.convert("RGB")
            

    def _preprocess(self, 
                   images: ImageInput
                   ) -> torch.Tensor:
        transforms = self.resize(self.size,  self.resize_mode, self.interpolation_mode)
        transforms.extend([
            self.convert_rgb,
            ToTensor(),
            Normalize(mean=self.image_mean, std=self.image_std)
        ])
        composed_transforms = Compose(transforms)
        images_tensor = composed_transforms(images)
        return images_tensor           
    
    def preprocess(self, 
                   images: ImageInput, 
                   return_tensors: Optional[Union[str, TensorType]] = None,
                   **kwargs) -> BatchFeature:
        if 'image_aspect_ratio' in kwargs:
            image_aspect_ratio = kwargs['image_aspect_ratio']
        else:
            image_aspect_ratio = 'pad'
        new_images = []
        if image_aspect_ratio == 'pad':
            for image in images:
                image = expand2square(image, tuple(int(x*255) for x in self.image_mean))
                image = self._preprocess(image)
                new_images.append(image)
        else:
            for image in images:
                image = process_anyres_image(image, self._preprocess, self.size,
                                             self.grids)
                new_images.append(image)
        
        if all(x.shape == new_images[0].shape for x in new_images):
            new_images = torch.stack(new_images, dim=0)
        if image_aspect_ratio == 'anyres':
            new_images = BatchFeature(data={"pixel_values": new_images}, tensor_type=return_tensors)
        else:
            new_images = BatchFeature(data={"pixel_values": new_images.unsqueeze(1).unsqueeze(0)}, tensor_type=return_tensors)
        return new_images
    
class ResizeKeepRatio:
    """ Resize and Keep Ratio

    Copy & paste from `timm`
    """

    def __init__(
            self,
            size,
            longest=0.,
            interpolation=InterpolationMode.BICUBIC,
            random_scale_prob=0.,
            random_scale_range=(0.85, 1.05),
            random_aspect_prob=0.,
            random_aspect_range=(0.9, 1.11)
    ):
        if isinstance(size, (list, tuple)):
            self.size = tuple(size)
        else:
            self.size = (size, size)
        self.interpolation = interpolation
        self.longest = float(longest)  # [0, 1] where 0 == shortest edge, 1 == longest
        self.random_scale_prob = random_scale_prob
        self.random_scale_range = random_scale_range
        self.random_aspect_prob = random_aspect_prob
        self.random_aspect_range = random_aspect_range

    @staticmethod
    def get_params(
            img,
            target_size,
            longest,
            random_scale_prob=0.,
            random_scale_range=(0.85, 1.05),
            random_aspect_prob=0.,
            random_aspect_range=(0.9, 1.11)
    ):
        """Get parameters
        """
        source_size = img.size[::-1]  # h, w
        h, w = source_size
        target_h, target_w = target_size
        ratio_h = h / target_h
        ratio_w = w / target_w
        ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1. - longest)
        if random_scale_prob > 0 and random.random() < random_scale_prob:
            ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1])
            ratio_factor = (ratio_factor, ratio_factor)
        else:
            ratio_factor = (1., 1.)
        if random_aspect_prob > 0 and random.random() < random_aspect_prob:
            aspect_factor = random.uniform(random_aspect_range[0], random_aspect_range[1])
            ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor)
        size = [round(x * f / ratio) for x, f in zip(source_size, ratio_factor)]
        return size

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped and resized.

        Returns:
            PIL Image: Resized, padded to at least target size, possibly cropped to exactly target size
        """
        size = self.get_params(
            img, self.size, self.longest,
            self.random_scale_prob, self.random_scale_range,
            self.random_aspect_prob, self.random_aspect_range
        )
        img = F.resize(img, size, self.interpolation)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
        format_string += f', interpolation={self.interpolation})'
        format_string += f', longest={self.longest:.3f})'
        return format_string

def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size

def center_crop_or_pad(img: torch.Tensor, output_size: List[int], fill=0) -> torch.Tensor:
    """Center crops and/or pads the given image.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.

    Args:
        img (PIL Image or Tensor): Image to be cropped.
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
            it is used for both directions.
        fill (int, Tuple[int]): Padding color

    Returns:
        PIL Image or Tensor: Cropped image.
    """
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

    _, image_height, image_width = F.get_dimensions(img)
    crop_height, crop_width = output_size

    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = F.pad(img, padding_ltrb, fill=fill)
        _, image_height, image_width = F.get_dimensions(img)
        if crop_width == image_width and crop_height == image_height:
            return img

    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
    return F.crop(img, crop_top, crop_left, crop_height, crop_width)
    
class CenterCropOrPad(torch.nn.Module):
    """Crops the given image at the center.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
    """

    def __init__(self, size, fill=0):
        super().__init__()
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
        self.fill = fill

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            PIL Image or Tensor: Cropped image.
        """
        return center_crop_or_pad(img, self.size, fill=self.fill)

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size})"
    
def process_anyres_image(image, processor, processor_size, grid_pinpoints):
    """
    Process an image with variable resolutions.

    Args:
        image (PIL.Image.Image): The input image to be processed.
        processor: The image processor object.
        processor_size (tuple, list): The size of the image processor.
        grid_pinpoints (str): A string representation of a list of possible resolutions.

    Returns:
        torch.Tensor: A tensor containing the processed image patches.
    """
    # FIXME: determine grid_pinpoints from image sizes.
    if type(grid_pinpoints) is list:
        possible_resolutions = grid_pinpoints
    else:
        possible_resolutions = ast.literal_eval(grid_pinpoints)
    best_resolution = select_best_resolution(image.size, possible_resolutions)
    image_padded = resize_and_pad_image(image, best_resolution)

    # processor_size = processor.transforms[0].size
    patches = divide_to_patches(image_padded, processor_size[0])

    image_original_resize = image.resize((processor_size[0], processor_size[0]))

    image_patches = [image_original_resize] + patches
    image_patches = [processor(image_patch)
                     for image_patch in image_patches]
    return torch.stack(image_patches, dim=0)    


def select_best_resolution(original_size, possible_resolutions):
    """
    Selects the best resolution from a list of possible resolutions based on the original size.

    Args:
        original_size (tuple): The original size of the image in the format (width, height).
        possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].

    Returns:
        tuple: The best fit resolution in the format (width, height).
    """
    original_width, original_height = original_size
    best_fit = None
    max_effective_resolution = 0
    min_wasted_resolution = float('inf')

    for width, height in possible_resolutions:
        scale = min(width / original_width, height / original_height)
        downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
        effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
        wasted_resolution = (width * height) - effective_resolution

        if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
            max_effective_resolution = effective_resolution
            min_wasted_resolution = wasted_resolution
            best_fit = (width, height)

    return best_fit

def resize_and_pad_image(image, target_resolution):
    """
    Resize and pad an image to a target resolution while maintaining aspect ratio.

    Args:
        image (PIL.Image.Image): The input image.
        target_resolution (tuple): The target resolution (width, height) of the image.

    Returns:
        PIL.Image.Image: The resized and padded image.
    """
    original_width, original_height = image.size
    target_width, target_height = target_resolution

    scale_w = target_width / original_width
    scale_h = target_height / original_height

    if scale_w < scale_h:
        new_width = target_width
        new_height = min(math.ceil(original_height * scale_w), target_height)
    else:
        new_height = target_height
        new_width = min(math.ceil(original_width * scale_h), target_width)

    # Resize the image
    resized_image = image.resize((new_width, new_height))

    new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
    paste_x = (target_width - new_width) // 2
    paste_y = (target_height - new_height) // 2
    new_image.paste(resized_image, (paste_x, paste_y))

    return new_image

def divide_to_patches(image, patch_size):
    """
    Divides an image into patches of a specified size.

    Args:
        image (PIL.Image.Image): The input image.
        patch_size (int): The size of each patch.

    Returns:
        list: A list of PIL.Image.Image objects representing the patches.
    """
    patches = []
    width, height = image.size
    for i in range(0, height, patch_size):
        for j in range(0, width, patch_size):
            box = (j, i, j + patch_size, i + patch_size)
            patch = image.crop(box)
            patches.append(patch)

    return patches