|
import random |
|
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union |
|
import torchvision.transforms.functional as F |
|
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \ |
|
CenterCrop, ColorJitter, Grayscale |
|
import numbers |
|
import torch |
|
import ast |
|
import math |
|
import numpy as np |
|
from PIL import Image |
|
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature |
|
from transformers.image_utils import ImageInput |
|
from transformers.utils import TensorType |
|
|
|
from utils import expand2square |
|
|
|
|
|
class Blip3ImageProcessor(BaseImageProcessor): |
|
|
|
def __init__( |
|
self, |
|
do_resize: bool = True, |
|
resize_mode: str = "squash", |
|
interpolation_mode: str = "bicubic", |
|
size: Union[Tuple[int, int], List[int]] = None, |
|
grids: Optional[List[int]] = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
**kwargs, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
self.do_resize = do_resize |
|
self.resize_mode = resize_mode |
|
self.interpolation_mode = interpolation_mode |
|
self.size = size if size is not None else (384, 384) |
|
self.grids = grids if grids is not None else [[384, 768],[768, 384],[768, 768],[1152, 384],[384,1152]] |
|
|
|
self.image_mean = image_mean if image_mean is not None else [0.5, 0.5, 0.5] |
|
self.image_std = image_std if image_std is not None else [0.5, 0.5, 0.5] |
|
|
|
|
|
@classmethod |
|
def resize(cls, image_size, resize_mode, interpolation='bicubic', fill_color=0): |
|
interpolation_mode = InterpolationMode.BILINEAR if interpolation == 'bilinear' else InterpolationMode.BICUBIC |
|
if resize_mode == 'longest': |
|
transforms = [ |
|
ResizeKeepRatio(image_size, interpolation=interpolation_mode, longest=1), |
|
CenterCropOrPad(image_size, fill=fill_color) |
|
] |
|
elif resize_mode == 'squash': |
|
if isinstance(image_size, int): |
|
image_size = (image_size, image_size) |
|
transforms = [ |
|
Resize(image_size, interpolation=interpolation_mode), |
|
] |
|
else: |
|
assert resize_mode == 'shortest' |
|
if not isinstance(image_size, (tuple, list)): |
|
image_size = (image_size, image_size) |
|
if image_size[0] == image_size[1]: |
|
|
|
transforms = [ |
|
Resize(image_size[0], interpolation=interpolation_mode) |
|
] |
|
else: |
|
|
|
transforms = [ResizeKeepRatio(image_size)] |
|
transforms += [CenterCrop(image_size)] |
|
return transforms |
|
|
|
@classmethod |
|
def convert_rgb(cls, image): |
|
return image.convert("RGB") |
|
|
|
|
|
def _preprocess(self, |
|
images: ImageInput |
|
) -> torch.Tensor: |
|
transforms = self.resize(self.size, self.resize_mode, self.interpolation_mode) |
|
transforms.extend([ |
|
self.convert_rgb, |
|
ToTensor(), |
|
Normalize(mean=self.image_mean, std=self.image_std) |
|
]) |
|
composed_transforms = Compose(transforms) |
|
images_tensor = composed_transforms(images) |
|
return images_tensor |
|
|
|
def preprocess(self, |
|
images: ImageInput, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
**kwargs) -> BatchFeature: |
|
if 'image_aspect_ratio' in kwargs: |
|
image_aspect_ratio = kwargs['image_aspect_ratio'] |
|
else: |
|
image_aspect_ratio = 'pad' |
|
new_images = [] |
|
if image_aspect_ratio == 'pad': |
|
for image in images: |
|
image = expand2square(image, tuple(int(x*255) for x in self.image_mean)) |
|
image = self._preprocess(image) |
|
new_images.append(image) |
|
else: |
|
for image in images: |
|
image = process_anyres_image(image, self._preprocess, self.size, |
|
self.grids) |
|
new_images.append(image) |
|
|
|
if all(x.shape == new_images[0].shape for x in new_images): |
|
new_images = torch.stack(new_images, dim=0) |
|
if image_aspect_ratio == 'anyres': |
|
new_images = BatchFeature(data={"pixel_values": new_images}, tensor_type=return_tensors) |
|
else: |
|
new_images = BatchFeature(data={"pixel_values": new_images.unsqueeze(1).unsqueeze(0)}, tensor_type=return_tensors) |
|
return new_images |
|
|
|
class ResizeKeepRatio: |
|
""" Resize and Keep Ratio |
|
|
|
Copy & paste from `timm` |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size, |
|
longest=0., |
|
interpolation=InterpolationMode.BICUBIC, |
|
random_scale_prob=0., |
|
random_scale_range=(0.85, 1.05), |
|
random_aspect_prob=0., |
|
random_aspect_range=(0.9, 1.11) |
|
): |
|
if isinstance(size, (list, tuple)): |
|
self.size = tuple(size) |
|
else: |
|
self.size = (size, size) |
|
self.interpolation = interpolation |
|
self.longest = float(longest) |
|
self.random_scale_prob = random_scale_prob |
|
self.random_scale_range = random_scale_range |
|
self.random_aspect_prob = random_aspect_prob |
|
self.random_aspect_range = random_aspect_range |
|
|
|
@staticmethod |
|
def get_params( |
|
img, |
|
target_size, |
|
longest, |
|
random_scale_prob=0., |
|
random_scale_range=(0.85, 1.05), |
|
random_aspect_prob=0., |
|
random_aspect_range=(0.9, 1.11) |
|
): |
|
"""Get parameters |
|
""" |
|
source_size = img.size[::-1] |
|
h, w = source_size |
|
target_h, target_w = target_size |
|
ratio_h = h / target_h |
|
ratio_w = w / target_w |
|
ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1. - longest) |
|
if random_scale_prob > 0 and random.random() < random_scale_prob: |
|
ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1]) |
|
ratio_factor = (ratio_factor, ratio_factor) |
|
else: |
|
ratio_factor = (1., 1.) |
|
if random_aspect_prob > 0 and random.random() < random_aspect_prob: |
|
aspect_factor = random.uniform(random_aspect_range[0], random_aspect_range[1]) |
|
ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor) |
|
size = [round(x * f / ratio) for x, f in zip(source_size, ratio_factor)] |
|
return size |
|
|
|
def __call__(self, img): |
|
""" |
|
Args: |
|
img (PIL Image): Image to be cropped and resized. |
|
|
|
Returns: |
|
PIL Image: Resized, padded to at least target size, possibly cropped to exactly target size |
|
""" |
|
size = self.get_params( |
|
img, self.size, self.longest, |
|
self.random_scale_prob, self.random_scale_range, |
|
self.random_aspect_prob, self.random_aspect_range |
|
) |
|
img = F.resize(img, size, self.interpolation) |
|
return img |
|
|
|
def __repr__(self): |
|
format_string = self.__class__.__name__ + '(size={0}'.format(self.size) |
|
format_string += f', interpolation={self.interpolation})' |
|
format_string += f', longest={self.longest:.3f})' |
|
return format_string |
|
|
|
def _setup_size(size, error_msg): |
|
if isinstance(size, numbers.Number): |
|
return int(size), int(size) |
|
|
|
if isinstance(size, Sequence) and len(size) == 1: |
|
return size[0], size[0] |
|
|
|
if len(size) != 2: |
|
raise ValueError(error_msg) |
|
|
|
return size |
|
|
|
def center_crop_or_pad(img: torch.Tensor, output_size: List[int], fill=0) -> torch.Tensor: |
|
"""Center crops and/or pads the given image. |
|
If the image is torch Tensor, it is expected |
|
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. |
|
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped. |
|
|
|
Args: |
|
img (PIL Image or Tensor): Image to be cropped. |
|
output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int, |
|
it is used for both directions. |
|
fill (int, Tuple[int]): Padding color |
|
|
|
Returns: |
|
PIL Image or Tensor: Cropped image. |
|
""" |
|
if isinstance(output_size, numbers.Number): |
|
output_size = (int(output_size), int(output_size)) |
|
elif isinstance(output_size, (tuple, list)) and len(output_size) == 1: |
|
output_size = (output_size[0], output_size[0]) |
|
|
|
_, image_height, image_width = F.get_dimensions(img) |
|
crop_height, crop_width = output_size |
|
|
|
if crop_width > image_width or crop_height > image_height: |
|
padding_ltrb = [ |
|
(crop_width - image_width) // 2 if crop_width > image_width else 0, |
|
(crop_height - image_height) // 2 if crop_height > image_height else 0, |
|
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0, |
|
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0, |
|
] |
|
img = F.pad(img, padding_ltrb, fill=fill) |
|
_, image_height, image_width = F.get_dimensions(img) |
|
if crop_width == image_width and crop_height == image_height: |
|
return img |
|
|
|
crop_top = int(round((image_height - crop_height) / 2.0)) |
|
crop_left = int(round((image_width - crop_width) / 2.0)) |
|
return F.crop(img, crop_top, crop_left, crop_height, crop_width) |
|
|
|
class CenterCropOrPad(torch.nn.Module): |
|
"""Crops the given image at the center. |
|
If the image is torch Tensor, it is expected |
|
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. |
|
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped. |
|
|
|
Args: |
|
size (sequence or int): Desired output size of the crop. If size is an |
|
int instead of sequence like (h, w), a square crop (size, size) is |
|
made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]). |
|
""" |
|
|
|
def __init__(self, size, fill=0): |
|
super().__init__() |
|
self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.") |
|
self.fill = fill |
|
|
|
def forward(self, img): |
|
""" |
|
Args: |
|
img (PIL Image or Tensor): Image to be cropped. |
|
|
|
Returns: |
|
PIL Image or Tensor: Cropped image. |
|
""" |
|
return center_crop_or_pad(img, self.size, fill=self.fill) |
|
|
|
def __repr__(self) -> str: |
|
return f"{self.__class__.__name__}(size={self.size})" |
|
|
|
def process_anyres_image(image, processor, processor_size, grid_pinpoints): |
|
""" |
|
Process an image with variable resolutions. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image to be processed. |
|
processor: The image processor object. |
|
processor_size (tuple, list): The size of the image processor. |
|
grid_pinpoints (str): A string representation of a list of possible resolutions. |
|
|
|
Returns: |
|
torch.Tensor: A tensor containing the processed image patches. |
|
""" |
|
|
|
if type(grid_pinpoints) is list: |
|
possible_resolutions = grid_pinpoints |
|
else: |
|
possible_resolutions = ast.literal_eval(grid_pinpoints) |
|
best_resolution = select_best_resolution(image.size, possible_resolutions) |
|
image_padded = resize_and_pad_image(image, best_resolution) |
|
|
|
|
|
patches = divide_to_patches(image_padded, processor_size[0]) |
|
|
|
image_original_resize = image.resize((processor_size[0], processor_size[0])) |
|
|
|
image_patches = [image_original_resize] + patches |
|
image_patches = [processor(image_patch) |
|
for image_patch in image_patches] |
|
return torch.stack(image_patches, dim=0) |
|
|
|
|
|
def select_best_resolution(original_size, possible_resolutions): |
|
""" |
|
Selects the best resolution from a list of possible resolutions based on the original size. |
|
|
|
Args: |
|
original_size (tuple): The original size of the image in the format (width, height). |
|
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. |
|
|
|
Returns: |
|
tuple: The best fit resolution in the format (width, height). |
|
""" |
|
original_width, original_height = original_size |
|
best_fit = None |
|
max_effective_resolution = 0 |
|
min_wasted_resolution = float('inf') |
|
|
|
for width, height in possible_resolutions: |
|
scale = min(width / original_width, height / original_height) |
|
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) |
|
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) |
|
wasted_resolution = (width * height) - effective_resolution |
|
|
|
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): |
|
max_effective_resolution = effective_resolution |
|
min_wasted_resolution = wasted_resolution |
|
best_fit = (width, height) |
|
|
|
return best_fit |
|
|
|
def resize_and_pad_image(image, target_resolution): |
|
""" |
|
Resize and pad an image to a target resolution while maintaining aspect ratio. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image. |
|
target_resolution (tuple): The target resolution (width, height) of the image. |
|
|
|
Returns: |
|
PIL.Image.Image: The resized and padded image. |
|
""" |
|
original_width, original_height = image.size |
|
target_width, target_height = target_resolution |
|
|
|
scale_w = target_width / original_width |
|
scale_h = target_height / original_height |
|
|
|
if scale_w < scale_h: |
|
new_width = target_width |
|
new_height = min(math.ceil(original_height * scale_w), target_height) |
|
else: |
|
new_height = target_height |
|
new_width = min(math.ceil(original_width * scale_h), target_width) |
|
|
|
|
|
resized_image = image.resize((new_width, new_height)) |
|
|
|
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0)) |
|
paste_x = (target_width - new_width) // 2 |
|
paste_y = (target_height - new_height) // 2 |
|
new_image.paste(resized_image, (paste_x, paste_y)) |
|
|
|
return new_image |
|
|
|
def divide_to_patches(image, patch_size): |
|
""" |
|
Divides an image into patches of a specified size. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image. |
|
patch_size (int): The size of each patch. |
|
|
|
Returns: |
|
list: A list of PIL.Image.Image objects representing the patches. |
|
""" |
|
patches = [] |
|
width, height = image.size |
|
for i in range(0, height, patch_size): |
|
for j in range(0, width, patch_size): |
|
box = (j, i, j + patch_size, i + patch_size) |
|
patch = image.crop(box) |
|
patches.append(patch) |
|
|
|
return patches |