|
--- |
|
library_name: transformers |
|
base_model: Samuael/ethiopic-sec2sec-tigrinya |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
- bleu |
|
model-index: |
|
- name: ethiopic-sec2sec-tigrinya |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ethiopic-sec2sec-tigrinya |
|
|
|
This model is a fine-tuned version of [Samuael/ethiopic-sec2sec-tigrinya](https://huggingface.co/Samuael/ethiopic-sec2sec-tigrinya) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.3390 |
|
- Wer: 0.2570 |
|
- Cer: 0.1269 |
|
- Bleu: 67.2562 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 9 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:| |
|
| 0.086 | 1.0 | 433 | 4.0475 | 0.2592 | 0.1222 | 67.0097 | |
|
| 0.1177 | 2.0 | 866 | 3.8429 | 0.3645 | 0.2577 | 59.7600 | |
|
| 0.1312 | 3.0 | 1299 | 4.0294 | 0.2630 | 0.1337 | 66.8126 | |
|
| 0.1322 | 4.0 | 1732 | 4.1292 | 0.2527 | 0.1231 | 68.4884 | |
|
| 0.1411 | 5.0 | 2165 | 3.9989 | 0.2662 | 0.1358 | 66.4299 | |
|
| 0.1686 | 6.0 | 2598 | 4.1555 | 0.2592 | 0.1388 | 67.9808 | |
|
| 0.1587 | 7.0 | 3031 | 4.2802 | 0.2543 | 0.1264 | 66.9025 | |
|
| 0.1386 | 8.0 | 3464 | 4.2682 | 0.2554 | 0.1283 | 68.7450 | |
|
| 0.0886 | 9.0 | 3897 | 4.3390 | 0.2570 | 0.1269 | 67.2562 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|