Samuael's picture
Samuael/tigrinya-asr-characters
c86ef27 verified
---
library_name: transformers
license: apache-2.0
base_model: Samuael/asr-amharic-phoneme-based-37-6
tags:
- generated_from_trainer
datasets:
- alffa_amharic
metrics:
- wer
model-index:
- name: tigrinya-asr-characters
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: alffa_amharic
type: alffa_amharic
config: clean
split: None
args: clean
metrics:
- name: Wer
type: wer
value: 0.5721231766612642
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tigrinya-asr-characters
This model is a fine-tuned version of [Samuael/asr-amharic-phoneme-based-37-6](https://huggingface.co/Samuael/asr-amharic-phoneme-based-37-6) on the alffa_amharic dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3509
- Wer: 0.5721
- Phoneme Cer: 0.2155
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Phoneme Cer |
|:-------------:|:------:|:----:|:---------------:|:------:|:-----------:|
| 3.8729 | 0.2312 | 200 | 3.8491 | 0.9962 | 0.6422 |
| 3.2897 | 0.4624 | 400 | 3.3571 | 0.9941 | 0.5266 |
| 2.9586 | 0.6936 | 600 | 2.9319 | 0.9433 | 0.4522 |
| 2.5878 | 0.9249 | 800 | 2.5198 | 0.8909 | 0.3965 |
| 2.272 | 1.1561 | 1000 | 2.2232 | 0.8314 | 0.3587 |
| 1.8661 | 1.3873 | 1200 | 2.0279 | 0.7801 | 0.3200 |
| 1.9839 | 1.6185 | 1400 | 1.8774 | 0.7202 | 0.2930 |
| 1.5144 | 1.8497 | 1600 | 1.7565 | 0.6910 | 0.2715 |
| 1.5869 | 2.0809 | 1800 | 1.6566 | 0.6694 | 0.2601 |
| 1.3379 | 2.3121 | 2000 | 1.5864 | 0.6413 | 0.2469 |
| 1.4446 | 2.5434 | 2200 | 1.5409 | 0.6272 | 0.2387 |
| 1.3749 | 2.7746 | 2400 | 1.5214 | 0.6207 | 0.2381 |
| 1.7298 | 3.0058 | 2600 | 1.4709 | 0.6121 | 0.2333 |
| 1.3708 | 3.2370 | 2800 | 1.4397 | 0.5991 | 0.2277 |
| 1.3355 | 3.4682 | 3000 | 1.4168 | 0.5894 | 0.2252 |
| 1.227 | 3.6994 | 3200 | 1.3986 | 0.5900 | 0.2229 |
| 1.4346 | 3.9306 | 3400 | 1.3821 | 0.5862 | 0.2223 |
| 1.0866 | 4.1618 | 3600 | 1.3747 | 0.5829 | 0.2208 |
| 1.1822 | 4.3931 | 3800 | 1.3586 | 0.5764 | 0.2164 |
| 0.927 | 4.6243 | 4000 | 1.3532 | 0.5748 | 0.2164 |
| 1.0948 | 4.8555 | 4200 | 1.3509 | 0.5721 | 0.2155 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3