Sandiago21's picture
update model card README.md
26b6c38
|
raw
history blame
2.69 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: hubert-large-ls960-ft-finetuned-gtzan
    results: []

hubert-large-ls960-ft-finetuned-gtzan

This model is a fine-tuned version of facebook/hubert-large-ls960-ft on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Accuracy: 0.86

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2625 1.0 56 2.2399 0.23
1.7887 1.99 112 1.7278 0.4
1.4728 2.99 168 1.4387 0.48
1.1536 4.0 225 1.3178 0.54
1.0758 5.0 281 1.1903 0.6
0.9742 5.99 337 0.8416 0.72
0.8285 6.99 393 0.5875 0.78
0.7953 8.0 450 0.7786 0.75
0.6224 9.0 506 0.6753 0.8
0.3806 9.99 562 0.5826 0.84
0.3121 10.99 618 0.7312 0.78
0.1729 12.0 675 0.6526 0.85
0.2958 13.0 731 0.7831 0.83
0.1496 13.99 787 0.8518 0.79
0.0659 14.99 843 0.8194 0.82
0.1208 16.0 900 0.8555 0.82
0.147 17.0 956 0.6768 0.86
0.0284 17.99 1012 0.7065 0.86
0.0295 18.99 1068 0.6942 0.87
0.0524 19.91 1120 nan 0.86

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3