results_1026_medium

This model is a fine-tuned version of google/gemma-2b-it on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6380

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 3
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.7375 0.0390 10 4.2741
3.911 0.0780 20 4.2339
3.7483 0.1170 30 4.1269
4.0206 0.1559 40 3.8986
4.6902 0.1949 50 3.5532
3.2196 0.2339 60 3.2401
3.0539 0.2729 70 3.0130
2.4944 0.3119 80 2.8331
2.4502 0.3509 90 2.6492
2.5653 0.3899 100 2.4577
2.7832 0.4288 110 2.3803
2.4319 0.4678 120 2.3086
1.8581 0.5068 130 2.2263
1.588 0.5458 140 2.1658
1.9006 0.5848 150 2.1379
2.7059 0.6238 160 2.1338
2.2761 0.6628 170 2.0950
1.6663 0.7018 180 2.0510
1.3498 0.7407 190 2.0417
1.6824 0.7797 200 2.0340
2.6165 0.8187 210 2.0028
2.1451 0.8577 220 1.9910
1.3869 0.8967 230 1.9698
1.3288 0.9357 240 1.9555
1.5853 0.9747 250 1.9570
2.0552 1.0136 260 1.9191
2.3622 1.0526 270 1.9206
2.0127 1.0916 280 1.9111
1.2681 1.1306 290 1.8985
1.303 1.1696 300 1.8957
1.9404 1.2086 310 1.8921
2.3832 1.2476 320 1.8766
1.7822 1.2865 330 1.8680
1.128 1.3255 340 1.8651
1.3576 1.3645 350 1.8616
1.8378 1.4035 360 1.8536
2.281 1.4425 370 1.8409
1.7978 1.4815 380 1.8333
1.1124 1.5205 390 1.8319
1.2702 1.5595 400 1.8315
1.785 1.5984 410 1.8288
2.2559 1.6374 420 1.8210
1.7997 1.6764 430 1.8109
1.0795 1.7154 440 1.8121
1.197 1.7544 450 1.8074
1.8304 1.7934 460 1.8126
2.2655 1.8324 470 1.8006
1.7715 1.8713 480 1.8003
1.0938 1.9103 490 1.7942
1.3049 1.9493 500 1.7928
1.5426 1.9883 510 1.7930
2.1529 2.0273 520 1.7900
2.0421 2.0663 530 1.7771
1.4795 2.1053 540 1.7755
0.9904 2.1442 550 1.7820
1.2937 2.1832 560 1.7812
2.0973 2.2222 570 1.7786
2.0218 2.2612 580 1.7715
1.4054 2.3002 590 1.7682
0.9818 2.3392 600 1.7749
1.307 2.3782 610 1.7700
2.1172 2.4172 620 1.7693
2.0437 2.4561 630 1.7652
1.5118 2.4951 640 1.7557
1.0348 2.5341 650 1.7611
1.3371 2.5731 660 1.7579
2.1021 2.6121 670 1.7543
1.9754 2.6511 680 1.7487
1.4214 2.6901 690 1.7471
0.9251 2.7290 700 1.7550
1.3379 2.7680 710 1.7502
2.1229 2.8070 720 1.7485
1.9831 2.8460 730 1.7448
1.4134 2.8850 740 1.7348
1.0077 2.9240 750 1.7426
1.2997 2.9630 760 1.7426
1.5318 3.0019 770 1.7349
2.3008 3.0409 780 1.7255
1.8745 3.0799 790 1.7276
1.146 3.1189 800 1.7298
1.0261 3.1579 810 1.7374
1.3219 3.1969 820 1.7431
2.2955 3.2359 830 1.7253
1.8123 3.2749 840 1.7233
1.1207 3.3138 850 1.7222
0.9991 3.3528 860 1.7291
1.2965 3.3918 870 1.7280
2.2965 3.4308 880 1.7243
1.8012 3.4698 890 1.7186
1.0526 3.5088 900 1.7187
0.9943 3.5478 910 1.7296
1.318 3.5867 920 1.7271
2.2739 3.6257 930 1.7169
1.8798 3.6647 940 1.7152
1.1567 3.7037 950 1.7070
0.9919 3.7427 960 1.7166
1.3261 3.7817 970 1.7130
2.3114 3.8207 980 1.7050
1.8273 3.8596 990 1.7034
1.1196 3.8986 1000 1.7026
1.0395 3.9376 1010 1.7127
1.3201 3.9766 1020 1.7129
1.8356 4.0156 1030 1.6966
2.0688 4.0546 1040 1.6940
1.6132 4.0936 1050 1.6956
0.8688 4.1326 1060 1.7055
1.1553 4.1715 1070 1.7119
1.6403 4.2105 1080 1.7046
2.1075 4.2495 1090 1.6948
1.6034 4.2885 1100 1.6959
0.9718 4.3275 1110 1.6976
1.0579 4.3665 1120 1.7145
1.665 4.4055 1130 1.6964
2.0631 4.4444 1140 1.6893
1.4689 4.4834 1150 1.6904
0.912 4.5224 1160 1.6923
1.0805 4.5614 1170 1.7014
1.6814 4.6004 1180 1.6933
2.0787 4.6394 1190 1.6858
1.5954 4.6784 1200 1.6862
0.9737 4.7173 1210 1.6861
1.0679 4.7563 1220 1.6953
1.6742 4.7953 1230 1.6895
2.0564 4.8343 1240 1.6798
1.5753 4.8733 1250 1.6808
0.9045 4.9123 1260 1.6801
1.0897 4.9513 1270 1.6883
1.3817 4.9903 1280 1.6865
2.0454 5.0292 1290 1.6746
1.8581 5.0682 1300 1.6706
1.2457 5.1072 1310 1.6780
0.8817 5.1462 1320 1.6873
1.1588 5.1852 1330 1.6930
2.0329 5.2242 1340 1.6813
1.8986 5.2632 1350 1.6762
1.2858 5.3021 1360 1.6741
0.8416 5.3411 1370 1.6825
1.1407 5.3801 1380 1.6903
1.9853 5.4191 1390 1.6737
1.8268 5.4581 1400 1.6726
1.2513 5.4971 1410 1.6732
0.867 5.5361 1420 1.6779
1.1384 5.5750 1430 1.6867
2.0149 5.6140 1440 1.6721
1.8491 5.6530 1450 1.6690
1.3532 5.6920 1460 1.6700
0.8445 5.7310 1470 1.6740
1.1203 5.7700 1480 1.6833
2.0431 5.8090 1490 1.6672
1.7919 5.8480 1500 1.6647
1.1206 5.8869 1510 1.6644
0.8747 5.9259 1520 1.6688
1.1668 5.9649 1530 1.6802
1.3985 6.0039 1540 1.6616
2.1421 6.0429 1550 1.6563
1.6559 6.0819 1560 1.6583
0.9856 6.1209 1570 1.6690
0.9008 6.1598 1580 1.6789
1.2231 6.1988 1590 1.6901
2.131 6.2378 1600 1.6656
1.6599 6.2768 1610 1.6677
0.9681 6.3158 1620 1.6656
0.8858 6.3548 1630 1.6737
1.2407 6.3938 1640 1.6805
2.166 6.4327 1650 1.6594
1.6903 6.4717 1660 1.6588
0.945 6.5107 1670 1.6599
0.9337 6.5497 1680 1.6679
1.2023 6.5887 1690 1.6814
2.1931 6.6277 1700 1.6595
1.6423 6.6667 1710 1.6596
0.9213 6.7057 1720 1.6609
0.9269 6.7446 1730 1.6659
1.2439 6.7836 1740 1.6691
2.1721 6.8226 1750 1.6527
1.7012 6.8616 1760 1.6516
0.9872 6.9006 1770 1.6563
0.8626 6.9396 1780 1.6643
1.2399 6.9786 1790 1.6661
1.747 7.0175 1800 1.6468
1.8333 7.0565 1810 1.6455
1.3556 7.0955 1820 1.6538
0.8188 7.1345 1830 1.6637
0.9805 7.1735 1840 1.6687
1.6384 7.2125 1850 1.6642
1.9626 7.2515 1860 1.6491
1.4326 7.2904 1870 1.6582
0.8209 7.3294 1880 1.6608
0.9862 7.3684 1890 1.6661
1.6188 7.4074 1900 1.6634
1.9313 7.4464 1910 1.6480
1.3892 7.4854 1920 1.6551
0.79 7.5244 1930 1.6603
0.9712 7.5634 1940 1.6679
1.5826 7.6023 1950 1.6606
1.9704 7.6413 1960 1.6463
1.4192 7.6803 1970 1.6506
0.7849 7.7193 1980 1.6553
0.9904 7.7583 1990 1.6606
1.6352 7.7973 2000 1.6519
2.0166 7.8363 2010 1.6425
1.4613 7.8752 2020 1.6448
0.822 7.9142 2030 1.6523
0.9734 7.9532 2040 1.6570
1.2641 7.9922 2050 1.6503
2.0093 8.0312 2060 1.6390
1.7434 8.0702 2070 1.6389
1.1463 8.1092 2080 1.6490
0.7531 8.1481 2090 1.6601
1.0364 8.1871 2100 1.6617
1.9569 8.2261 2110 1.6436
1.7511 8.2651 2120 1.6394
1.1094 8.3041 2130 1.6526
0.7236 8.3431 2140 1.6619
1.0677 8.3821 2150 1.6602
1.9794 8.4211 2160 1.6436
1.7215 8.4600 2170 1.6370
1.0996 8.4990 2180 1.6489
0.7863 8.5380 2190 1.6542
1.0097 8.5770 2200 1.6568
1.9809 8.6160 2210 1.6434
1.6825 8.6550 2220 1.6360
1.0263 8.6940 2230 1.6434
0.7833 8.7329 2240 1.6501
1.0464 8.7719 2250 1.6508
1.9653 8.8109 2260 1.6401
1.7373 8.8499 2270 1.6344
1.1006 8.8889 2280 1.6413
0.8168 8.9279 2290 1.6541
0.9995 8.9669 2300 1.6534
1.4208 9.0058 2310 1.6379
1.9976 9.0448 2320 1.6321
1.6071 9.0838 2330 1.6334
0.8642 9.1228 2340 1.6474
0.7999 9.1618 2350 1.6597
1.1814 9.2008 2360 1.6597
2.0584 9.2398 2370 1.6371
1.553 9.2788 2380 1.6367
0.8407 9.3177 2390 1.6471
0.794 9.3567 2400 1.6581
1.174 9.3957 2410 1.6569
2.0687 9.4347 2420 1.6380
1.5462 9.4737 2430 1.6351
0.8547 9.5127 2440 1.6441
0.8228 9.5517 2450 1.6526
1.2233 9.5906 2460 1.6499
2.0733 9.6296 2470 1.6349
1.538 9.6686 2480 1.6347
0.8964 9.7076 2490 1.6424
0.8674 9.7466 2500 1.6536
1.2348 9.7856 2510 1.6496
2.0887 9.8246 2520 1.6320
1.5475 9.8635 2530 1.6309
0.8144 9.9025 2540 1.6412
0.8235 9.9415 2550 1.6502
1.178 9.9805 2560 1.6487
1.6384 10.0195 2570 1.6345
1.8175 10.0585 2580 1.6300
1.2408 10.0975 2590 1.6356
0.7216 10.1365 2600 1.6489
0.8593 10.1754 2610 1.6568
1.607 10.2144 2620 1.6480
1.8762 10.2534 2630 1.6334
1.3494 10.2924 2640 1.6354
0.7465 10.3314 2650 1.6458
0.8743 10.3704 2660 1.6558
1.6364 10.4094 2670 1.6468
1.8216 10.4483 2680 1.6318
1.2798 10.4873 2690 1.6353
0.726 10.5263 2700 1.6452
0.9583 10.5653 2710 1.6488
1.5887 10.6043 2720 1.6462
1.84 10.6433 2730 1.6327
1.2454 10.6823 2740 1.6320
0.7697 10.7212 2750 1.6397
0.8999 10.7602 2760 1.6519
1.5935 10.7992 2770 1.6455
1.8429 10.8382 2780 1.6322
1.3332 10.8772 2790 1.6325
0.6932 10.9162 2800 1.6411
0.9339 10.9552 2810 1.6452
1.1425 10.9942 2820 1.6433
1.889 11.0331 2830 1.6314
1.6236 11.0721 2840 1.6297
0.9341 11.1111 2850 1.6386
0.7124 11.1501 2860 1.6499
0.9938 11.1891 2870 1.6523
1.9533 11.2281 2880 1.6402
1.652 11.2671 2890 1.6317
1.0537 11.3060 2900 1.6360
0.7237 11.3450 2910 1.6447
0.9102 11.3840 2920 1.6498
1.9928 11.4230 2930 1.6416
1.6343 11.4620 2940 1.6310
1.0092 11.5010 2950 1.6310
0.7098 11.5400 2960 1.6398
0.9438 11.5789 2970 1.6471
1.9748 11.6179 2980 1.6426
1.6513 11.6569 2990 1.6329
0.9409 11.6959 3000 1.6320
0.7378 11.7349 3010 1.6380
0.9646 11.7739 3020 1.6446
1.9973 11.8129 3030 1.6421
1.6751 11.8519 3040 1.6340
1.0134 11.8908 3050 1.6319
0.7059 11.9298 3060 1.6380
0.9441 11.9688 3070 1.6446
1.4615 12.0078 3080 1.6384
1.9982 12.0468 3090 1.6308
1.443 12.0858 3100 1.6314
0.757 12.1248 3110 1.6383
0.8057 12.1637 3120 1.6475
1.2138 12.2027 3130 1.6491
1.9368 12.2417 3140 1.6360
1.3835 12.2807 3150 1.6329
0.7351 12.3197 3160 1.6369
0.7449 12.3587 3170 1.6447
1.1674 12.3977 3180 1.6486
1.9846 12.4366 3190 1.6387
1.427 12.4756 3200 1.6337
0.8101 12.5146 3210 1.6330
0.784 12.5536 3220 1.6422
1.1873 12.5926 3230 1.6475
2.0327 12.6316 3240 1.6411
1.5589 12.6706 3250 1.6352
0.8416 12.7096 3260 1.6339
0.7736 12.7485 3270 1.6395
1.1923 12.7875 3280 1.6452
1.982 12.8265 3290 1.6388
1.4829 12.8655 3300 1.6325
0.7603 12.9045 3310 1.6321
0.7794 12.9435 3320 1.6398
1.1345 12.9825 3330 1.6440
1.6627 13.0214 3340 1.6384
1.7906 13.0604 3350 1.6331
1.156 13.0994 3360 1.6328
0.7005 13.1384 3370 1.6374
0.8508 13.1774 3380 1.6448
1.6253 13.2164 3390 1.6488
1.7616 13.2554 3400 1.6398
1.2173 13.2943 3410 1.6350
0.6789 13.3333 3420 1.6361
0.8691 13.3723 3430 1.6443
1.6237 13.4113 3440 1.6468
1.7865 13.4503 3450 1.6403
1.2722 13.4893 3460 1.6344
0.6823 13.5283 3470 1.6343
0.8759 13.5673 3480 1.6424
1.5915 13.6062 3490 1.6451
1.7412 13.6452 3500 1.6398
1.1348 13.6842 3510 1.6353
0.6631 13.7232 3520 1.6351
0.8673 13.7622 3530 1.6405
1.6407 13.8012 3540 1.6414
1.7293 13.8402 3550 1.6381
1.2252 13.8791 3560 1.6345
0.673 13.9181 3570 1.6352
0.8808 13.9571 3580 1.6424
1.1056 13.9961 3590 1.6425
2.0034 14.0351 3600 1.6371
1.6216 14.0741 3610 1.6333
0.9085 14.1131 3620 1.6347
0.7023 14.1520 3630 1.6385
0.8838 14.1910 3640 1.6462
1.9691 14.2300 3650 1.6449
1.5183 14.2690 3660 1.6392
0.8066 14.3080 3670 1.6345
0.7142 14.3470 3680 1.6370
0.9286 14.3860 3690 1.6435
2.0038 14.4250 3700 1.6448
1.601 14.4639 3710 1.6402
0.9244 14.5029 3720 1.6338
0.6977 14.5419 3730 1.6354
0.8881 14.5809 3740 1.6426
1.9395 14.6199 3750 1.6441
1.6051 14.6589 3760 1.6402
1.008 14.6979 3770 1.6356
0.6612 14.7368 3780 1.6344
0.8928 14.7758 3790 1.6385
2.0018 14.8148 3800 1.6408
1.6221 14.8538 3810 1.6379
0.921 14.8928 3820 1.6342
0.6683 14.9318 3830 1.6352
0.9269 14.9708 3840 1.6378
1.4392 15.0097 3850 1.6385
1.9238 15.0487 3860 1.6371
1.4064 15.0877 3870 1.6364
0.739 15.1267 3880 1.6363
0.7393 15.1657 3890 1.6388
1.2143 15.2047 3900 1.6432
1.9835 15.2437 3910 1.6404
1.4888 15.2827 3920 1.6371
0.751 15.3216 3930 1.6354
0.7866 15.3606 3940 1.6358
1.2281 15.3996 3950 1.6399
1.9032 15.4386 3960 1.6397
1.3723 15.4776 3970 1.6383
0.7189 15.5166 3980 1.6355
0.7309 15.5556 3990 1.6376
1.2181 15.5945 4000 1.6403
1.9174 15.6335 4010 1.6391
1.2947 15.6725 4020 1.6375
0.7134 15.7115 4030 1.6362
0.7807 15.7505 4040 1.6373
1.2161 15.7895 4050 1.6405
1.939 15.8285 4060 1.6384
1.3711 15.8674 4070 1.6366
0.7455 15.9064 4080 1.6348
0.7517 15.9454 4090 1.6357
1.1461 15.9844 4100 1.6382
1.6604 16.0234 4110 1.6382
1.7005 16.0624 4120 1.6373
1.1151 16.1014 4130 1.6374
0.6724 16.1404 4140 1.6371
0.8738 16.1793 4150 1.6379
1.682 16.2183 4160 1.6391
1.6665 16.2573 4170 1.6375
1.1856 16.2963 4180 1.6366
0.6374 16.3353 4190 1.6366
0.8564 16.3743 4200 1.6389
1.651 16.4133 4210 1.6406
1.7028 16.4522 4220 1.6383
1.1576 16.4912 4230 1.6365
0.6747 16.5302 4240 1.6363
0.8639 16.5692 4250 1.6377
1.6352 16.6082 4260 1.6396
1.757 16.6472 4270 1.6390
1.0778 16.6862 4280 1.6388
0.644 16.7251 4290 1.6382
0.8102 16.7641 4300 1.6384
1.6998 16.8031 4310 1.6392
1.7384 16.8421 4320 1.6372
1.1362 16.8811 4330 1.6362
0.6682 16.9201 4340 1.6362
0.8349 16.9591 4350 1.6368
1.0263 16.9981 4360 1.6384
1.9781 17.0370 4370 1.6386
1.5533 17.0760 4380 1.6385
0.8585 17.1150 4390 1.6383
0.6612 17.1540 4400 1.6383
0.863 17.1930 4410 1.6391
1.9873 17.2320 4420 1.6395
1.5251 17.2710 4430 1.6384
0.8887 17.3099 4440 1.6377
0.6743 17.3489 4450 1.6377
0.8481 17.3879 4460 1.6383
1.9994 17.4269 4470 1.6386
1.5665 17.4659 4480 1.6382
0.8675 17.5049 4490 1.6379
0.6853 17.5439 4500 1.6382
0.9162 17.5828 4510 1.6391
2.0417 17.6218 4520 1.6391
1.5883 17.6608 4530 1.6380
0.9551 17.6998 4540 1.6376
0.6642 17.7388 4550 1.6377
0.9115 17.7778 4560 1.6378
2.05 17.8168 4570 1.6376
1.5172 17.8558 4580 1.6370
0.7651 17.8947 4590 1.6368
0.707 17.9337 4600 1.6370
0.8869 17.9727 4610 1.6373
1.4506 18.0117 4620 1.6377
1.9137 18.0507 4630 1.6374
1.3038 18.0897 4640 1.6371
0.6498 18.1287 4650 1.6371
0.7462 18.1676 4660 1.6374
1.2987 18.2066 4670 1.6378
1.938 18.2456 4680 1.6376
1.4307 18.2846 4690 1.6374
0.7548 18.3236 4700 1.6374
0.7381 18.3626 4710 1.6375
1.2753 18.4016 4720 1.6379
1.8916 18.4405 4730 1.6379
1.3062 18.4795 4740 1.6377
0.6819 18.5185 4750 1.6377
0.7771 18.5575 4760 1.6377
1.2419 18.5965 4770 1.6378
1.8299 18.6355 4780 1.6377
1.2819 18.6745 4790 1.6378
0.74 18.7135 4800 1.6376
0.7668 18.7524 4810 1.6377
1.2643 18.7914 4820 1.6378
1.9668 18.8304 4830 1.6378
1.365 18.8694 4840 1.6377
0.7506 18.9084 4850 1.6377
0.7601 18.9474 4860 1.6378
1.084 18.9864 4870 1.6380
1.6764 19.0253 4880 1.6380
1.6286 19.0643 4890 1.6380
1.111 19.1033 4900 1.6379
0.6536 19.1423 4910 1.6379
0.8533 19.1813 4920 1.6380
1.7116 19.2203 4930 1.6381
1.7198 19.2593 4940 1.6380
1.0983 19.2982 4950 1.6380
0.6609 19.3372 4960 1.6380
0.8579 19.3762 4970 1.6380
1.7292 19.4152 4980 1.6380
1.7108 19.4542 4990 1.6380
1.1063 19.4932 5000 1.6380
0.6559 19.5322 5010 1.6380
0.8649 19.5712 5020 1.6380
1.7209 19.6101 5030 1.6380
1.6668 19.6491 5040 1.6380
1.0578 19.6881 5050 1.6380
0.6209 19.7271 5060 1.6380
0.8345 19.7661 5070 1.6380
1.726 19.8051 5080 1.6380
1.641 19.8441 5090 1.6380
1.0477 19.8830 5100 1.6380
0.6487 19.9220 5110 1.6380
0.838 19.9610 5120 1.6380

Framework versions

  • PEFT 0.12.0
  • Transformers 4.45.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for SangMoone/results_1026_medium

Base model

google/gemma-2b-it
Adapter
(547)
this model