results_1027_easy

This model is a fine-tuned version of google/gemma-2b-it on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5176

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 3
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.7763 0.0389 10 4.5283
3.8936 0.0779 20 4.4799
4.4563 0.1168 30 4.3501
4.7589 0.1557 40 4.0769
5.071 0.1946 50 3.6929
3.2634 0.2336 60 3.3487
2.8326 0.2725 70 3.0637
2.819 0.3114 80 2.8154
2.6421 0.3504 90 2.5662
2.3516 0.3893 100 2.3786
2.7655 0.4282 110 2.3151
2.097 0.4672 120 2.1992
1.9609 0.5061 130 2.1322
1.8021 0.5450 140 2.0846
1.6522 0.5839 150 2.0758
2.6338 0.6229 160 2.0508
1.8254 0.6618 170 1.9887
1.7601 0.7007 180 1.9707
1.6096 0.7397 190 1.9472
1.4924 0.7786 200 1.9573
2.5712 0.8175 210 1.9522
1.6991 0.8564 220 1.9024
1.6546 0.8954 230 1.8793
1.5023 0.9343 240 1.8753
1.4243 0.9732 250 1.8831
2.0387 1.0122 260 1.8509
2.1742 1.0511 270 1.8497
1.6214 1.0900 280 1.8301
1.5333 1.1290 290 1.8235
1.4649 1.1679 300 1.8228
1.6879 1.2068 310 1.8274
2.2073 1.2457 320 1.8120
1.5935 1.2847 330 1.7940
1.514 1.3236 340 1.7872
1.3913 1.3625 350 1.7860
1.6293 1.4015 360 1.7919
2.115 1.4404 370 1.7775
1.5845 1.4793 380 1.7729
1.4547 1.5182 390 1.7540
1.3436 1.5572 400 1.7591
1.6404 1.5961 410 1.7705
2.1136 1.6350 420 1.7545
1.5435 1.6740 430 1.7411
1.4524 1.7129 440 1.7353
1.3298 1.7518 450 1.7408
1.6466 1.7908 460 1.7537
2.0529 1.8297 470 1.7372
1.5272 1.8686 480 1.7231
1.4131 1.9075 490 1.7233
1.3182 1.9465 500 1.7230
1.4042 1.9854 510 1.7303
2.0085 2.0243 520 1.7065
1.6983 2.0633 530 1.7059
1.4279 2.1022 540 1.7026
1.3527 2.1411 550 1.7021
1.2341 2.1800 560 1.7234
1.9291 2.2190 570 1.7160
1.7796 2.2579 580 1.7010
1.4267 2.2968 590 1.6932
1.3393 2.3358 600 1.6907
1.2142 2.3747 610 1.7022
1.9125 2.4136 620 1.6990
1.8458 2.4526 630 1.6864
1.4531 2.4915 640 1.6796
1.3657 2.5304 650 1.6782
1.2651 2.5693 660 1.6826
1.9316 2.6083 670 1.6875
1.6314 2.6472 680 1.6757
1.4485 2.6861 690 1.6691
1.309 2.7251 700 1.6664
1.209 2.7640 710 1.6777
1.8986 2.8029 720 1.6775
1.8361 2.8418 730 1.6669
1.4449 2.8808 740 1.6572
1.2946 2.9197 750 1.6591
1.2103 2.9586 760 1.6680
1.4037 2.9976 770 1.6621
2.1818 3.0365 780 1.6511
1.4904 3.0754 790 1.6450
1.3461 3.1144 800 1.6488
1.2472 3.1533 810 1.6551
1.1493 3.1922 820 1.6697
2.2146 3.2311 830 1.6583
1.403 3.2701 840 1.6433
1.3514 3.3090 850 1.6436
1.2089 3.3479 860 1.6471
1.1023 3.3869 870 1.6645
2.2152 3.4258 880 1.6598
1.5242 3.4647 890 1.6477
1.3203 3.5036 900 1.6369
1.2507 3.5426 910 1.6402
1.1166 3.5815 920 1.6616
2.2196 3.6204 930 1.6440
1.4112 3.6594 940 1.6346
1.3503 3.6983 950 1.6256
1.2029 3.7372 960 1.6336
1.1152 3.7762 970 1.6468
2.1977 3.8151 980 1.6385
1.5103 3.8540 990 1.6287
1.362 3.8929 1000 1.6246
1.2141 3.9319 1010 1.6220
1.1004 3.9708 1020 1.6423
1.6619 4.0097 1030 1.6203
1.9806 4.0487 1040 1.6170
1.3531 4.0876 1050 1.6129
1.281 4.1265 1060 1.6145
1.1584 4.1655 1070 1.6254
1.3343 4.2044 1080 1.6362
1.9491 4.2433 1090 1.6206
1.3445 4.2822 1100 1.6129
1.2577 4.3212 1110 1.6119
1.1242 4.3601 1120 1.6255
1.3583 4.3990 1130 1.6395
2.0065 4.4380 1140 1.6209
1.3461 4.4769 1150 1.6104
1.2333 4.5158 1160 1.6055
1.1523 4.5547 1170 1.6114
1.3992 4.5937 1180 1.6308
2.0767 4.6326 1190 1.6160
1.3482 4.6715 1200 1.6039
1.2425 4.7105 1210 1.6042
1.1431 4.7494 1220 1.6075
1.3811 4.7883 1230 1.6289
1.9523 4.8273 1240 1.6105
1.3783 4.8662 1250 1.5982
1.2572 4.9051 1260 1.5952
1.1646 4.9440 1270 1.5982
1.1906 4.9830 1280 1.6090
1.7989 5.0219 1290 1.5914
1.7403 5.0608 1300 1.5873
1.2874 5.0998 1310 1.5850
1.1733 5.1387 1320 1.5948
1.0615 5.1776 1330 1.6029
1.6934 5.2165 1340 1.6018
1.6591 5.2555 1350 1.5912
1.2596 5.2944 1360 1.5863
1.1479 5.3333 1370 1.5888
1.0699 5.3723 1380 1.5977
1.7117 5.4112 1390 1.6021
1.6833 5.4501 1400 1.5841
1.288 5.4891 1410 1.5820
1.2 5.5280 1420 1.5814
1.0931 5.5669 1430 1.5936
1.715 5.6058 1440 1.5990
1.6323 5.6448 1450 1.5816
1.2706 5.6837 1460 1.5785
1.1385 5.7226 1470 1.5805
1.0803 5.7616 1480 1.5904
1.6976 5.8005 1490 1.5994
1.6462 5.8394 1500 1.5772
1.3095 5.8783 1510 1.5740
1.1689 5.9173 1520 1.5726
1.071 5.9562 1530 1.5818
1.1859 5.9951 1540 1.5829
2.0191 6.0341 1550 1.5715
1.4098 6.0730 1560 1.5694
1.2502 6.1119 1570 1.5730
1.0788 6.1509 1580 1.5807
0.988 6.1898 1590 1.6018
2.0501 6.2287 1600 1.5809
1.3556 6.2676 1610 1.5715
1.2059 6.3066 1620 1.5718
1.0579 6.3455 1630 1.5743
0.971 6.3844 1640 1.5913
2.0085 6.4234 1650 1.5908
1.4356 6.4623 1660 1.5711
1.2325 6.5012 1670 1.5663
1.111 6.5401 1680 1.5682
0.9896 6.5791 1690 1.5832
2.0567 6.6180 1700 1.5820
1.3979 6.6569 1710 1.5675
1.2178 6.6959 1720 1.5624
1.0477 6.7348 1730 1.5670
0.9771 6.7737 1740 1.5721
2.0197 6.8127 1750 1.5751
1.258 6.8516 1760 1.5606
1.2167 6.8905 1770 1.5588
1.0911 6.9294 1780 1.5622
1.0111 6.9684 1790 1.5690
1.4849 7.0073 1800 1.5580
1.9573 7.0462 1810 1.5582
1.2576 7.0852 1820 1.5510
1.1611 7.1241 1830 1.5627
1.0478 7.1630 1840 1.5702
1.1798 7.2019 1850 1.5827
1.9795 7.2409 1860 1.5587
1.2165 7.2798 1870 1.5507
1.1532 7.3187 1880 1.5570
1.0266 7.3577 1890 1.5631
1.1541 7.3966 1900 1.5813
1.9844 7.4355 1910 1.5687
1.272 7.4745 1920 1.5524
1.15 7.5134 1930 1.5564
1.0207 7.5523 1940 1.5631
1.1958 7.5912 1950 1.5714
1.8459 7.6302 1960 1.5598
1.2237 7.6691 1970 1.5502
1.0912 7.7080 1980 1.5576
1.0293 7.7470 1990 1.5605
1.1759 7.7859 2000 1.5748
1.9501 7.8248 2010 1.5619
1.278 7.8637 2020 1.5485
1.1444 7.9027 2030 1.5470
0.9825 7.9416 2040 1.5567
1.1099 7.9805 2050 1.5713
1.6283 8.0195 2060 1.5478
1.5212 8.0584 2070 1.5439
1.1641 8.0973 2080 1.5414
1.0507 8.1363 2090 1.5554
0.9638 8.1752 2100 1.5691
1.5681 8.2141 2110 1.5728
1.6317 8.2530 2120 1.5490
1.1769 8.2920 2130 1.5427
1.0881 8.3309 2140 1.5535
0.9701 8.3698 2150 1.5607
1.5534 8.4088 2160 1.5754
1.7206 8.4477 2170 1.5547
1.2126 8.4866 2180 1.5407
1.063 8.5255 2190 1.5540
0.972 8.5645 2200 1.5613
1.5243 8.6034 2210 1.5667
1.6769 8.6423 2220 1.5481
1.2002 8.6813 2230 1.5378
1.0425 8.7202 2240 1.5443
0.9598 8.7591 2250 1.5548
1.5318 8.7981 2260 1.5622
1.6112 8.8370 2270 1.5435
1.2198 8.8759 2280 1.5350
1.0364 8.9148 2290 1.5446
0.9443 8.9538 2300 1.5562
1.1055 8.9927 2310 1.5467
1.9621 9.0316 2320 1.5375
1.3497 9.0706 2330 1.5358
1.1692 9.1095 2340 1.5320
0.9726 9.1484 2350 1.5516
0.9062 9.1873 2360 1.5673
1.8685 9.2263 2370 1.5527
1.376 9.2652 2380 1.5364
1.1297 9.3041 2390 1.5330
0.9794 9.3431 2400 1.5479
0.8959 9.3820 2410 1.5624
1.9017 9.4209 2420 1.5572
1.3083 9.4599 2430 1.5361
1.1149 9.4988 2440 1.5312
0.9902 9.5377 2450 1.5475
0.9252 9.5766 2460 1.5582
1.8811 9.6156 2470 1.5605
1.3395 9.6545 2480 1.5356
1.1577 9.6934 2490 1.5291
0.9977 9.7324 2500 1.5435
0.8878 9.7713 2510 1.5561
1.8883 9.8102 2520 1.5541
1.2806 9.8491 2530 1.5316
1.1298 9.8881 2540 1.5272
0.9948 9.9270 2550 1.5390
0.8918 9.9659 2560 1.5530
1.2933 10.0049 2570 1.5386
1.9556 10.0438 2580 1.5349
1.1961 10.0827 2590 1.5291
1.098 10.1217 2600 1.5311
0.943 10.1606 2610 1.5481
1.0277 10.1995 2620 1.5648
1.9568 10.2384 2630 1.5436
1.1865 10.2774 2640 1.5299
1.0858 10.3163 2650 1.5292
0.9243 10.3552 2660 1.5482
1.0187 10.3942 2670 1.5573
2.0017 10.4331 2680 1.5513
1.2038 10.4720 2690 1.5293
1.0947 10.5109 2700 1.5263
0.9356 10.5499 2710 1.5422
1.0083 10.5888 2720 1.5570
1.9654 10.6277 2730 1.5480
1.1638 10.6667 2740 1.5290
1.0585 10.7056 2750 1.5248
0.9363 10.7445 2760 1.5409
1.0313 10.7835 2770 1.5523
1.897 10.8224 2780 1.5488
1.1019 10.8613 2790 1.5276
1.0441 10.9002 2800 1.5242
0.9135 10.9392 2810 1.5403
0.9778 10.9781 2820 1.5515
1.5447 11.0170 2830 1.5332
1.6157 11.0560 2840 1.5295
1.1112 11.0949 2850 1.5248
0.9669 11.1338 2860 1.5301
0.8877 11.1727 2870 1.5445
1.4297 11.2117 2880 1.5561
1.5628 11.2506 2890 1.5340
1.1499 11.2895 2900 1.5247
0.9486 11.3285 2910 1.5303
0.8866 11.3674 2920 1.5451
1.3927 11.4063 2930 1.5516
1.5893 11.4453 2940 1.5372
1.1348 11.4842 2950 1.5259
0.9893 11.5231 2960 1.5259
0.8922 11.5620 2970 1.5432
1.3919 11.6010 2980 1.5495
1.5819 11.6399 2990 1.5356
1.1188 11.6788 3000 1.5227
1.034 11.7178 3010 1.5211
0.8827 11.7567 3020 1.5371
1.4279 11.7956 3030 1.5479
1.6805 11.8345 3040 1.5390
1.171 11.8735 3050 1.5218
1.0276 11.9124 3060 1.5209
0.9081 11.9513 3070 1.5341
1.1048 11.9903 3080 1.5415
1.8218 12.0292 3090 1.5286
1.3226 12.0681 3100 1.5233
1.0733 12.1071 3110 1.5216
0.9257 12.1460 3120 1.5272
0.8751 12.1849 3130 1.5413
1.7518 12.2238 3140 1.5455
1.2875 12.2628 3150 1.5270
1.1092 12.3017 3160 1.5211
0.9707 12.3406 3170 1.5254
0.8338 12.3796 3180 1.5412
1.7599 12.4185 3190 1.5457
1.3328 12.4574 3200 1.5311
1.0805 12.4964 3210 1.5219
0.9024 12.5353 3220 1.5267
0.837 12.5742 3230 1.5429
1.7753 12.6131 3240 1.5473
1.3426 12.6521 3250 1.5309
1.0846 12.6910 3260 1.5202
0.9351 12.7299 3270 1.5223
0.8488 12.7689 3280 1.5328
1.7821 12.8078 3290 1.5418
1.3392 12.8467 3300 1.5286
1.1127 12.8856 3310 1.5166
0.9486 12.9246 3320 1.5209
0.8417 12.9635 3330 1.5322
1.1718 13.0024 3340 1.5309
1.9716 13.0414 3350 1.5266
1.1337 13.0803 3360 1.5236
1.0718 13.1192 3370 1.5188
0.8822 13.1582 3380 1.5261
0.9183 13.1971 3390 1.5378
1.9565 13.2360 3400 1.5338
1.1241 13.2749 3410 1.5208
1.0213 13.3139 3420 1.5165
0.8995 13.3528 3430 1.5246
0.8652 13.3917 3440 1.5373
1.9183 13.4307 3450 1.5405
1.1156 13.4696 3460 1.5241
1.0254 13.5085 3470 1.5173
0.8632 13.5474 3480 1.5216
0.9004 13.5864 3490 1.5332
2.0236 13.6253 3500 1.5368
1.1511 13.6642 3510 1.5245
1.0503 13.7032 3520 1.5171
0.9045 13.7421 3530 1.5191
0.8821 13.7810 3540 1.5287
1.9734 13.8200 3550 1.5321
1.1315 13.8589 3560 1.5213
1.0325 13.8978 3570 1.5165
0.8575 13.9367 3580 1.5207
0.8822 13.9757 3590 1.5289
1.447 14.0146 3600 1.5233
1.6728 14.0535 3610 1.5217
1.1381 14.0925 3620 1.5187
0.9491 14.1314 3630 1.5173
0.8364 14.1703 3640 1.5241
1.2993 14.2092 3650 1.5325
1.6248 14.2482 3660 1.5288
1.122 14.2871 3670 1.5192
1.005 14.3260 3680 1.5164
0.8747 14.3650 3690 1.5229
1.3121 14.4039 3700 1.5298
1.634 14.4428 3710 1.5287
1.066 14.4818 3720 1.5195
0.9698 14.5207 3730 1.5160
0.8493 14.5596 3740 1.5213
1.3017 14.5985 3750 1.5302
1.5936 14.6375 3760 1.5277
1.0953 14.6764 3770 1.5197
0.9469 14.7153 3780 1.5156
0.8458 14.7543 3790 1.5186
1.3036 14.7932 3800 1.5267
1.574 14.8321 3810 1.5260
1.1098 14.8710 3820 1.5192
0.9657 14.9100 3830 1.5146
0.8517 14.9489 3840 1.5178
1.0223 14.9878 3850 1.5236
1.6899 15.0268 3860 1.5228
1.3283 15.0657 3870 1.5222
1.0927 15.1046 3880 1.5195
0.9177 15.1436 3890 1.5172
0.8073 15.1825 3900 1.5216
1.6583 15.2214 3910 1.5260
1.2776 15.2603 3920 1.5231
1.0238 15.2993 3930 1.5184
0.9063 15.3382 3940 1.5168
0.7996 15.3771 3950 1.5199
1.6785 15.4161 3960 1.5251
1.4315 15.4550 3970 1.5234
1.0864 15.4939 3980 1.5170
0.9408 15.5328 3990 1.5146
0.8287 15.5718 4000 1.5177
1.6559 15.6107 4010 1.5214
1.2785 15.6496 4020 1.5206
1.068 15.6886 4030 1.5159
0.915 15.7275 4040 1.5143
0.8228 15.7664 4050 1.5177
1.6733 15.8054 4060 1.5228
1.4009 15.8443 4070 1.5221
1.0602 15.8832 4080 1.5167
0.8688 15.9221 4090 1.5146
0.8254 15.9611 4100 1.5166
1.0349 16.0 4110 1.5195
2.0188 16.0389 4120 1.5204
1.1284 16.0779 4130 1.5197
1.0365 16.1168 4140 1.5169
0.8305 16.1557 4150 1.5169
0.7805 16.1946 4160 1.5203
1.9277 16.2336 4170 1.5228
1.0915 16.2725 4180 1.5212
1.0079 16.3114 4190 1.5182
0.8584 16.3504 4200 1.5172
0.7641 16.3893 4210 1.5192
2.0658 16.4282 4220 1.5209
1.1286 16.4672 4230 1.5202
1.0207 16.5061 4240 1.5169
0.8381 16.5450 4250 1.5162
0.7626 16.5839 4260 1.5182
1.9724 16.6229 4270 1.5203
1.1349 16.6618 4280 1.5192
0.9713 16.7007 4290 1.5165
0.8707 16.7397 4300 1.5155
0.7885 16.7786 4310 1.5171
2.0034 16.8175 4320 1.5186
1.1205 16.8564 4330 1.5184
1.0324 16.8954 4340 1.5167
0.8949 16.9343 4350 1.5154
0.7844 16.9732 4360 1.5169
1.4873 17.0122 4370 1.5183
1.7198 17.0511 4380 1.5189
1.126 17.0900 4390 1.5182
0.9643 17.1290 4400 1.5165
0.8349 17.1679 4410 1.5165
1.1926 17.2068 4420 1.5182
1.6662 17.2457 4430 1.5193
1.0947 17.2847 4440 1.5185
0.9806 17.3236 4450 1.5167
0.8168 17.3625 4460 1.5164
1.1892 17.4015 4470 1.5178
1.6756 17.4404 4480 1.5186
1.0762 17.4793 4490 1.5182
0.9869 17.5182 4500 1.5174
0.8504 17.5572 4510 1.5173
1.203 17.5961 4520 1.5183
1.6836 17.6350 4530 1.5187
1.0487 17.6740 4540 1.5181
0.9546 17.7129 4550 1.5170
0.8789 17.7518 4560 1.5168
1.2027 17.7908 4570 1.5172
1.6092 17.8297 4580 1.5177
1.0803 17.8686 4590 1.5174
0.9246 17.9075 4600 1.5169
0.7924 17.9465 4610 1.5170
0.9566 17.9854 4620 1.5179
1.602 18.0243 4630 1.5183
1.3736 18.0633 4640 1.5184
1.0586 18.1022 4650 1.5179
0.8991 18.1411 4660 1.5173
0.7958 18.1800 4670 1.5175
1.6093 18.2190 4680 1.5180
1.3001 18.2579 4690 1.5182
1.023 18.2968 4700 1.5178
0.9075 18.3358 4710 1.5173
0.7954 18.3747 4720 1.5174
1.5904 18.4136 4730 1.5179
1.3829 18.4526 4740 1.5181
1.0583 18.4915 4750 1.5179
0.869 18.5304 4760 1.5174
0.8325 18.5693 4770 1.5174
1.5891 18.6083 4780 1.5176
1.4293 18.6472 4790 1.5177
1.0682 18.6861 4800 1.5175
0.942 18.7251 4810 1.5173
0.8241 18.7640 4820 1.5172
1.5807 18.8029 4830 1.5174
1.4419 18.8418 4840 1.5175
1.0941 18.8808 4850 1.5174
0.875 18.9197 4860 1.5173
0.8072 18.9586 4870 1.5174
0.9517 18.9976 4880 1.5176
1.8926 19.0365 4890 1.5177
1.0971 19.0754 4900 1.5177
0.9934 19.1144 4910 1.5175
0.8713 19.1533 4920 1.5175
0.7732 19.1922 4930 1.5175
1.9746 19.2311 4940 1.5176
1.1707 19.2701 4950 1.5176
1.0383 19.3090 4960 1.5175
0.8454 19.3479 4970 1.5175
0.787 19.3869 4980 1.5176
1.9232 19.4258 4990 1.5176
1.0839 19.4647 5000 1.5176
1.009 19.5036 5010 1.5176
0.8278 19.5426 5020 1.5176
0.7563 19.5815 5030 1.5176
1.9536 19.6204 5040 1.5176
1.1281 19.6594 5050 1.5176
0.9934 19.6983 5060 1.5176
0.8663 19.7372 5070 1.5176
0.7888 19.7762 5080 1.5176
1.9462 19.8151 5090 1.5176
1.2184 19.8540 5100 1.5176
1.0388 19.8929 5110 1.5176
0.8607 19.9319 5120 1.5176

Framework versions

  • PEFT 0.12.0
  • Transformers 4.45.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for SangMoone/results_1027_easy

Base model

google/gemma-2b-it
Adapter
(551)
this model