File size: 6,230 Bytes
1c7bbea 4dbd536 1c7bbea 4dbd536 1c7bbea 4dbd536 1c7bbea 4dbd536 1c7bbea 4dbd536 1c7bbea 4dbd536 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import sys
import cv2
import numpy as np
import torch
from PIL import Image, ImageOps
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.utils import load_image
from diffusers import DPMSolverMultistepScheduler
from powerpaint_v2.BrushNet_CA import BrushNetModel
from powerpaint_v2.pipeline_PowerPaint_Brushnet_CA import (
StableDiffusionPowerPaintBrushNetPipeline,
)
from powerpaint_v2.power_paint_tokenizer import PowerPaintTokenizer
from powerpaint_v2.unet_2d_condition import UNet2DConditionModel
def task_to_prompt(control_type):
if control_type == "object-removal":
promptA = "P_ctxt"
promptB = "P_ctxt"
negative_promptA = "P_obj"
negative_promptB = "P_obj"
elif control_type == "context-aware":
promptA = "P_ctxt"
promptB = "P_ctxt"
negative_promptA = ""
negative_promptB = ""
elif control_type == "shape-guided":
promptA = "P_shape"
promptB = "P_ctxt"
negative_promptA = "P_shape"
negative_promptB = "P_ctxt"
elif control_type == "image-outpainting":
promptA = "P_ctxt"
promptB = "P_ctxt"
negative_promptA = "P_obj"
negative_promptB = "P_obj"
else:
promptA = "P_obj"
promptB = "P_obj"
negative_promptA = "P_obj"
negative_promptB = "P_obj"
return promptA, promptB, negative_promptA, negative_promptB
@torch.inference_mode()
def predict(
pipe,
input_image,
prompt,
fitting_degree,
ddim_steps,
scale,
negative_prompt,
task,
):
promptA, promptB, negative_promptA, negative_promptB = task_to_prompt(task)
print(task, promptA, promptB, negative_promptA, negative_promptB)
img = np.array(input_image["image"].convert("RGB"))
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
input_image["image"] = input_image["image"].resize((H, W))
input_image["mask"] = input_image["mask"].resize((H, W))
np_inpimg = np.array(input_image["image"])
np_inmask = np.array(input_image["mask"]) / 255.0
np_inpimg = np_inpimg * (1 - np_inmask)
input_image["image"] = Image.fromarray(np_inpimg.astype(np.uint8)).convert("RGB")
result = pipe(
promptA=promptA,
promptB=promptB,
promptU=prompt,
tradoff=fitting_degree,
tradoff_nag=fitting_degree,
image=input_image["image"].convert("RGB"),
mask=input_image["mask"].convert("RGB"),
num_inference_steps=ddim_steps,
brushnet_conditioning_scale=1.0,
negative_promptA=negative_promptA,
negative_promptB=negative_promptB,
negative_promptU=negative_prompt,
guidance_scale=scale,
width=H,
height=W,
).images[0]
return result
# base_model_name = "runwayml/stable-diffusion-v1-5"
base_model_name = sys.argv[1]
text_encoder_brushnet = CLIPTextModel.from_pretrained(
"text_encoder_brushnet",
variant="fp16",
torch_dtype=torch.float16,
)
unet = UNet2DConditionModel.from_pretrained(
base_model_name,
subfolder="unet",
variant="fp16",
torch_dtype=torch.float16,
)
brushnet = BrushNetModel.from_pretrained(
"./PowerPaint_Brushnet",
variant="fp16",
torch_dtype=torch.float16,
)
pipe = StableDiffusionPowerPaintBrushNetPipeline.from_pretrained(
base_model_name,
torch_dtype=torch.float16,
safety_checker=None,
unet=unet,
brushnet=brushnet,
text_encoder_brushnet=text_encoder_brushnet,
variant="fp16",
)
pipe.tokenizer = PowerPaintTokenizer(CLIPTokenizer.from_pretrained("./tokenizer"))
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("mps")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
image = load_image(img_url).convert("RGB").resize((512, 512))
mask = load_image(mask_url).convert("RGB").resize((512, 512))
input_image = {"image": image, "mask": mask}
prompt = "Face of a fox sitting on a bench"
negative_prompt = "out of frame, lowres, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, disfigured, gross proportions, malformed limbs, watermark, signature"
fitting_degree = 1
steps = 30
tasks = [
{
"task": "object-removal",
"guidance_scale": 12,
"prompt": "empty scene blur",
"negative_prompt": "",
},
{
"task": "shape-guided",
"guidance_scale": 7.5,
"prompt": prompt,
"negative_prompt": negative_prompt,
},
{
"task": "context-aware",
"guidance_scale": 7.5,
"prompt": "empty secne",
"negative_prompt": negative_prompt,
},
{
"task": "inpaint",
"guidance_scale": 7.5,
"prompt": prompt,
"negative_prompt": negative_prompt,
},
{
"task": "image-outpainting",
"guidance_scale": 7.5,
"prompt": "",
"negative_prompt": negative_prompt,
},
]
for task in tasks:
if task["task"] == "image-outpainting":
margin = 128
input_image["image"] = ImageOps.expand(
input_image["image"],
border=(margin, margin, margin, margin),
fill=(127, 127, 127),
)
outpaint_mask = np.zeros_like(np.asarray(input_image["mask"]))
input_image["mask"] = Image.fromarray(
cv2.copyMakeBorder(
outpaint_mask,
margin,
margin,
margin,
margin,
cv2.BORDER_CONSTANT,
value=(255, 255, 255),
)
)
result_image = predict(
pipe,
input_image,
task["prompt"],
fitting_degree,
steps,
task["guidance_scale"],
task["negative_prompt"],
task["task"],
)
result_image.save(f"{task['task']}_result.png")
|