File size: 6,230 Bytes
1c7bbea
4dbd536
 
 
1c7bbea
4dbd536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c7bbea
 
4dbd536
 
 
 
 
 
1c7bbea
4dbd536
 
 
 
 
 
 
 
 
 
1c7bbea
4dbd536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c7bbea
4dbd536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import sys
import cv2
import numpy as np
import torch
from PIL import Image, ImageOps
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.utils import load_image
from diffusers import DPMSolverMultistepScheduler

from powerpaint_v2.BrushNet_CA import BrushNetModel
from powerpaint_v2.pipeline_PowerPaint_Brushnet_CA import (
    StableDiffusionPowerPaintBrushNetPipeline,
)
from powerpaint_v2.power_paint_tokenizer import PowerPaintTokenizer
from powerpaint_v2.unet_2d_condition import UNet2DConditionModel


def task_to_prompt(control_type):
    if control_type == "object-removal":
        promptA = "P_ctxt"
        promptB = "P_ctxt"
        negative_promptA = "P_obj"
        negative_promptB = "P_obj"
    elif control_type == "context-aware":
        promptA = "P_ctxt"
        promptB = "P_ctxt"
        negative_promptA = ""
        negative_promptB = ""
    elif control_type == "shape-guided":
        promptA = "P_shape"
        promptB = "P_ctxt"
        negative_promptA = "P_shape"
        negative_promptB = "P_ctxt"
    elif control_type == "image-outpainting":
        promptA = "P_ctxt"
        promptB = "P_ctxt"
        negative_promptA = "P_obj"
        negative_promptB = "P_obj"
    else:
        promptA = "P_obj"
        promptB = "P_obj"
        negative_promptA = "P_obj"
        negative_promptB = "P_obj"

    return promptA, promptB, negative_promptA, negative_promptB


@torch.inference_mode()
def predict(
    pipe,
    input_image,
    prompt,
    fitting_degree,
    ddim_steps,
    scale,
    negative_prompt,
    task,
):
    promptA, promptB, negative_promptA, negative_promptB = task_to_prompt(task)
    print(task, promptA, promptB, negative_promptA, negative_promptB)
    img = np.array(input_image["image"].convert("RGB"))

    W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
    H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
    input_image["image"] = input_image["image"].resize((H, W))
    input_image["mask"] = input_image["mask"].resize((H, W))

    np_inpimg = np.array(input_image["image"])
    np_inmask = np.array(input_image["mask"]) / 255.0

    np_inpimg = np_inpimg * (1 - np_inmask)

    input_image["image"] = Image.fromarray(np_inpimg.astype(np.uint8)).convert("RGB")

    result = pipe(
        promptA=promptA,
        promptB=promptB,
        promptU=prompt,
        tradoff=fitting_degree,
        tradoff_nag=fitting_degree,
        image=input_image["image"].convert("RGB"),
        mask=input_image["mask"].convert("RGB"),
        num_inference_steps=ddim_steps,
        brushnet_conditioning_scale=1.0,
        negative_promptA=negative_promptA,
        negative_promptB=negative_promptB,
        negative_promptU=negative_prompt,
        guidance_scale=scale,
        width=H,
        height=W,
    ).images[0]
    return result


# base_model_name = "runwayml/stable-diffusion-v1-5"
base_model_name = sys.argv[1]
text_encoder_brushnet = CLIPTextModel.from_pretrained(
    "text_encoder_brushnet",
    variant="fp16",
    torch_dtype=torch.float16,
)
unet = UNet2DConditionModel.from_pretrained(
    base_model_name,
    subfolder="unet",
    variant="fp16",
    torch_dtype=torch.float16,
)
brushnet = BrushNetModel.from_pretrained(
    "./PowerPaint_Brushnet",
    variant="fp16",
    torch_dtype=torch.float16,
)
pipe = StableDiffusionPowerPaintBrushNetPipeline.from_pretrained(
    base_model_name,
    torch_dtype=torch.float16,
    safety_checker=None,
    unet=unet,
    brushnet=brushnet,
    text_encoder_brushnet=text_encoder_brushnet,
    variant="fp16",
)
pipe.tokenizer = PowerPaintTokenizer(CLIPTokenizer.from_pretrained("./tokenizer"))
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("mps")


img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
image = load_image(img_url).convert("RGB").resize((512, 512))
mask = load_image(mask_url).convert("RGB").resize((512, 512))


input_image = {"image": image, "mask": mask}
prompt = "Face of a fox sitting on a bench"
negative_prompt = "out of frame, lowres, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, disfigured, gross proportions, malformed limbs, watermark, signature"
fitting_degree = 1
steps = 30
tasks = [
    {
        "task": "object-removal",
        "guidance_scale": 12,
        "prompt": "empty scene blur",
        "negative_prompt": "",
    },
    {
        "task": "shape-guided",
        "guidance_scale": 7.5,
        "prompt": prompt,
        "negative_prompt": negative_prompt,
    },
    {
        "task": "context-aware",
        "guidance_scale": 7.5,
        "prompt": "empty secne",
        "negative_prompt": negative_prompt,
    },
    {
        "task": "inpaint",
        "guidance_scale": 7.5,
        "prompt": prompt,
        "negative_prompt": negative_prompt,
    },
    {
        "task": "image-outpainting",
        "guidance_scale": 7.5,
        "prompt": "",
        "negative_prompt": negative_prompt,
    },
]

for task in tasks:
    if task["task"] == "image-outpainting":
        margin = 128
        input_image["image"] = ImageOps.expand(
            input_image["image"],
            border=(margin, margin, margin, margin),
            fill=(127, 127, 127),
        )
        outpaint_mask = np.zeros_like(np.asarray(input_image["mask"]))
        input_image["mask"] = Image.fromarray(
            cv2.copyMakeBorder(
                outpaint_mask,
                margin,
                margin,
                margin,
                margin,
                cv2.BORDER_CONSTANT,
                value=(255, 255, 255),
            )
        )

    result_image = predict(
        pipe,
        input_image,
        task["prompt"],
        fitting_degree,
        steps,
        task["guidance_scale"],
        task["negative_prompt"],
        task["task"],
    )

    result_image.save(f"{task['task']}_result.png")