|
Usage: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
question_template = "# Question\n\n{question}\n\n# Solution\n\n" |
|
|
|
model_name = "ScalableMath/llemma-7b-sft-metamath-level-1to3-hf" |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/llemma_7b") |
|
|
|
question = "Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form $(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.$" |
|
question = question_template.format(question=question) |
|
|
|
input_tensor = torch.tensor([tokenizer.encode(question)]) |
|
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=500) |
|
|
|
result = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(result) |
|
``` |
|
|
|
Example result: |
|
|
|
``` |
|
# Question |
|
Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form $(r,\theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$ |
|
|
|
# Solution |
|
To convert from rectangular coordinates to polar coordinates, we use the formulas $r = \sqrt{x^2 + y^2}$ and $\theta = \arctan\left(\frac{y}{x}\right)$. |
|
|
|
In this case, $x = 0$ and $y = 3$, so $r = \sqrt{0^2 + 3^2} = 3$ and $\theta = \arctan\left(\frac{3}{0}\right)$. |
|
|
|
Since $\frac{3}{0}$ is undefined, we can say that $\theta$ is undefined. |
|
However, we know that $\theta$ is an angle, and since $r > 0$, we can say that $\theta$ is any angle that satisfies $0 \le \theta < 2 \pi$. |
|
|
|
Therefore, the polar coordinates of the point $(0,3)$ are $\boxed{(3,\theta)}$, where $0 \le \theta < 2 \pi$. |
|
|
|
# Answer |
|
|
|
(3,\theta) |
|
``` |