Scrya's picture
Update README.md
60459a7
metadata
language:
  - vi
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
  - google/fleurs
  - vivos
metrics:
  - wer
model-index:
  - name: Whisper Medium VI - Multi - Augmented
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: vi
          split: test
        metrics:
          - type: wer
            value: 16.63
            name: WER
          - type: cer
            value: 7.74
            name: CER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: vi_vn
          split: test
        metrics:
          - type: wer
            value: 9.04
            name: WER
          - type: cer
            value: 4.81
            name: CER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: vivos
          type: vivos
          split: test
        metrics:
          - type: wer
            value: 8.53
            name: WER
          - type: cer
            value: 3.67
            name: CER

Whisper Medium VI - Multi - Augmented

This model is a fine-tuned version of openai/whisper-medium on the following datasets:

It achieves the following results on the evaluation set:

  • Loss: 0.3696
  • Wer: 16.6594
  • Cer: 7.7625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

Training:

Evaluation:

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.1992 1.8 1000 0.2726 17.4929 8.2562
0.0402 3.6 2000 0.3317 17.4929 8.2588
0.0073 5.4 3000 0.3429 17.6793 8.8913
0.0014 7.19 4000 0.3599 19.0283 9.5103
0.0006 8.99 5000 0.3696 16.6594 7.7625

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2