NER-finetuned-BETO / README.md
Seb00927's picture
Upload README.md with huggingface_hub
01e9d71 verified
metadata
language:
  - es
license: apache-2.0
datasets:
  - eriktks/conll2002
metrics:
  - precision
  - recall
  - f1
  - accuracy
pipeline_tag: token-classification

Model Name: NER-finetuned-BETO

This is a BERT model fine-tuned for Named Entity Recognition (NER).

Model Description

This is a fine-tuned BERT model for Named Entity Recognition (NER) task using CONLL2002 dataset.

In the first part, the dataset must be pre-processed in order to give it to the model. This is done using the 🤗 Transformers and BERT tokenizers. Once this is done, finetuning is applied from BETO and using the 🤗 AutoModelForTokenClassification.

Finally, the model is trained obtaining the neccesary metrics for evaluating its performance (Precision, Recall, F1 and Accuracy)

Summary of executed tests can be found in: https://docs.google.com/spreadsheets/d/1lI7skNIvRurwq3LA5ps7JFK5TxToEx4s7Kaah3ezyQc/edit?usp=sharing

Model can be found in: https://huggingface.co/Seb00927/NER-finetuned-BETO

Github repository: https://github.com/paulrojasg/nlp_4th_workshop

Training

Training Details

  • Epochs: 10
  • Learning Rate: 2e-05
  • Weight Decay: 0.01
  • Batch Size (Train): 16
  • Batch Size (Eval): 8

Training Metrics

Epoch Training Loss Validation Loss Precision Recall F1 Score Accuracy
1 0.0104 0.1915 0.8359 0.8568 0.8462 0.9701
2 0.0101 0.2187 0.8226 0.8387 0.8306 0.9676
3 0.0066 0.2085 0.8551 0.8637 0.8594 0.9699
4 0.0069 0.2139 0.8342 0.8431 0.8386 0.9698
5 0.0070 0.2110 0.8480 0.8536 0.8508 0.9708
6 0.0060 0.2214 0.8378 0.8497 0.8437 0.9703
7 0.0042 0.2284 0.8437 0.8596 0.8516 0.9704
8 0.0034 0.2344 0.8417 0.8566 0.8491 0.9702
9 0.0026 0.2385 0.8400 0.8580 0.8489 0.9698
10 0.0023 0.2412 0.8460 0.8610 0.8534 0.9704

Authors

Made by:

  • Paul Rodrigo Rojas Guerrero
  • Jose Luis Hincapie Bucheli
  • Sebastián Idrobo Avirama

With help from: