Edit model card

lmv2-g-bnkstm-994-doc-09-10

This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0926
  • Account Number Precision: 0.8889
  • Account Number Recall: 0.9014
  • Account Number F1: 0.8951
  • Account Number Number: 142
  • Bank Name Precision: 0.7993
  • Bank Name Recall: 0.8484
  • Bank Name F1: 0.8231
  • Bank Name Number: 277
  • Cust Address Precision: 0.8563
  • Cust Address Recall: 0.8827
  • Cust Address F1: 0.8693
  • Cust Address Number: 162
  • Cust Name Precision: 0.9181
  • Cust Name Recall: 0.9290
  • Cust Name F1: 0.9235
  • Cust Name Number: 169
  • Ending Balance Precision: 0.7706
  • Ending Balance Recall: 0.7892
  • Ending Balance F1: 0.7798
  • Ending Balance Number: 166
  • Starting Balance Precision: 0.9051
  • Starting Balance Recall: 0.8720
  • Starting Balance F1: 0.8882
  • Starting Balance Number: 164
  • Statement Date Precision: 0.8817
  • Statement Date Recall: 0.8765
  • Statement Date F1: 0.8791
  • Statement Date Number: 170
  • Overall Precision: 0.8531
  • Overall Recall: 0.8688
  • Overall F1: 0.8609
  • Overall Accuracy: 0.9850

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Account Number Precision Account Number Recall Account Number F1 Account Number Number Bank Name Precision Bank Name Recall Bank Name F1 Bank Name Number Cust Address Precision Cust Address Recall Cust Address F1 Cust Address Number Cust Name Precision Cust Name Recall Cust Name F1 Cust Name Number Ending Balance Precision Ending Balance Recall Ending Balance F1 Ending Balance Number Starting Balance Precision Starting Balance Recall Starting Balance F1 Starting Balance Number Statement Date Precision Statement Date Recall Statement Date F1 Statement Date Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.7648 1.0 795 0.2550 0.8514 0.4437 0.5833 142 0.6229 0.5307 0.5731 277 0.5650 0.7778 0.6545 162 0.6682 0.8698 0.7558 169 0.0 0.0 0.0 166 0.0 0.0 0.0 164 0.6040 0.3588 0.4502 170 0.6370 0.4352 0.5171 0.9623
0.1725 2.0 1590 0.1128 0.6067 0.7606 0.675 142 0.7294 0.7978 0.7621 277 0.8150 0.8704 0.8418 162 0.8966 0.9231 0.9096 169 0.7786 0.6566 0.7124 166 0.7576 0.7622 0.7599 164 0.8509 0.8059 0.8278 170 0.7705 0.7976 0.7838 0.9816
0.0877 3.0 2385 0.0877 0.7857 0.9296 0.8516 142 0.7872 0.8014 0.7943 277 0.7709 0.8519 0.8094 162 0.8827 0.9349 0.9080 169 0.7673 0.7349 0.7508 166 0.8313 0.8415 0.8364 164 0.7716 0.8941 0.8283 170 0.7985 0.8496 0.8233 0.9830
0.0564 4.0 3180 0.0826 0.8503 0.8803 0.8651 142 0.7566 0.8303 0.7917 277 0.7895 0.8333 0.8108 162 0.8824 0.8876 0.8850 169 0.7049 0.7771 0.7393 166 0.7717 0.8659 0.8161 164 0.8363 0.8412 0.8387 170 0.7925 0.8432 0.8171 0.9828
0.0402 5.0 3975 0.0889 0.8815 0.8380 0.8592 142 0.7758 0.7870 0.7814 277 0.8266 0.8827 0.8537 162 0.8983 0.9408 0.9191 169 0.6378 0.7108 0.6724 166 0.8707 0.7805 0.8232 164 0.8508 0.9059 0.8775 170 0.8124 0.8312 0.8217 0.9837
0.0332 6.0 4770 0.0864 0.7778 0.9366 0.8498 142 0.8175 0.8412 0.8292 277 0.8704 0.8704 0.8704 162 0.9167 0.9112 0.9139 169 0.7702 0.7470 0.7584 166 0.8424 0.8476 0.8450 164 0.8728 0.8882 0.8805 170 0.8366 0.86 0.8481 0.9846
0.0285 7.0 5565 0.0858 0.7516 0.8310 0.7893 142 0.8156 0.8303 0.8229 277 0.8373 0.8580 0.8476 162 0.9133 0.9349 0.9240 169 0.8288 0.7289 0.7756 166 0.8144 0.8293 0.8218 164 0.8353 0.8353 0.8353 170 0.8279 0.8352 0.8315 0.9840
0.027 8.0 6360 0.1033 0.8841 0.8592 0.8714 142 0.7695 0.8556 0.8103 277 0.7816 0.8395 0.8095 162 0.9075 0.9290 0.9181 169 0.8538 0.6687 0.75 166 0.8861 0.8537 0.8696 164 0.8492 0.8941 0.8711 170 0.8373 0.844 0.8406 0.9837
0.0237 9.0 7155 0.0922 0.8792 0.9225 0.9003 142 0.8262 0.8412 0.8336 277 0.8421 0.8889 0.8649 162 0.8983 0.9408 0.9191 169 0.8113 0.7771 0.7938 166 0.7641 0.9085 0.8301 164 0.8466 0.8765 0.8613 170 0.8358 0.8752 0.8550 0.9850
0.023 10.0 7950 0.0935 0.8493 0.8732 0.8611 142 0.7848 0.8556 0.8187 277 0.8246 0.8704 0.8468 162 0.9080 0.9349 0.9213 169 0.8133 0.7349 0.7722 166 0.8867 0.8110 0.8471 164 0.8735 0.8529 0.8631 170 0.8419 0.848 0.8450 0.9841
0.0197 11.0 8745 0.0926 0.8889 0.9014 0.8951 142 0.7993 0.8484 0.8231 277 0.8563 0.8827 0.8693 162 0.9181 0.9290 0.9235 169 0.7706 0.7892 0.7798 166 0.9051 0.8720 0.8882 164 0.8817 0.8765 0.8791 170 0.8531 0.8688 0.8609 0.9850
0.0193 12.0 9540 0.1035 0.7514 0.9366 0.8339 142 0.8127 0.8773 0.8438 277 0.8103 0.8704 0.8393 162 0.9405 0.9349 0.9377 169 0.6983 0.7530 0.7246 166 0.8011 0.8841 0.8406 164 0.8462 0.9059 0.8750 170 0.8081 0.8792 0.8421 0.9836
0.0166 13.0 10335 0.1077 0.8889 0.8451 0.8664 142 0.8062 0.8412 0.8233 277 0.7953 0.8395 0.8168 162 0.8786 0.8994 0.8889 169 0.8069 0.7048 0.7524 166 0.8167 0.8963 0.8547 164 0.8671 0.8824 0.8746 170 0.8333 0.844 0.8386 0.9836
0.016 14.0 11130 0.1247 0.8521 0.8521 0.8521 142 0.8456 0.8303 0.8379 277 0.8050 0.7901 0.7975 162 0.9167 0.9112 0.9139 169 0.8392 0.7229 0.7767 166 0.8521 0.8780 0.8649 164 0.9262 0.8118 0.8652 170 0.8611 0.828 0.8442 0.9836
0.0153 15.0 11925 0.1030 0.8280 0.9155 0.8696 142 0.7637 0.8051 0.7838 277 0.8452 0.8765 0.8606 162 0.9337 0.9172 0.9254 169 0.7551 0.6687 0.7093 166 0.8616 0.8354 0.8483 164 0.8287 0.8824 0.8547 170 0.8252 0.8384 0.8317 0.9834
0.0139 16.0 12720 0.0920 0.8075 0.9155 0.8581 142 0.7735 0.8628 0.8157 277 0.7663 0.8704 0.8150 162 0.8870 0.9290 0.9075 169 0.7647 0.7831 0.7738 166 0.8571 0.8780 0.8675 164 0.6630 0.7176 0.6893 170 0.7857 0.8504 0.8167 0.9832
0.0124 17.0 13515 0.1057 0.8013 0.8521 0.8259 142 0.8087 0.8087 0.8087 277 0.7663 0.8704 0.8150 162 0.9186 0.9349 0.9267 169 0.8322 0.7169 0.7702 166 0.8563 0.8720 0.8640 164 0.8603 0.9059 0.8825 170 0.8327 0.848 0.8403 0.9829
0.0135 18.0 14310 0.1001 0.8323 0.9085 0.8687 142 0.8363 0.8484 0.8423 277 0.8494 0.8704 0.8598 162 0.8462 0.9112 0.8775 169 0.7925 0.7590 0.7754 166 0.8286 0.8841 0.8555 164 0.8686 0.8941 0.8812 170 0.8368 0.8656 0.8510 0.9839
0.0125 19.0 15105 0.1200 0.8562 0.8803 0.8681 142 0.8 0.8520 0.8252 277 0.7705 0.8704 0.8174 162 0.8864 0.9231 0.9043 169 0.7716 0.7530 0.7622 166 0.8642 0.8537 0.8589 164 0.85 0.9 0.8743 170 0.8252 0.8608 0.8426 0.9843
0.0098 20.0 15900 0.1097 0.8993 0.8803 0.8897 142 0.7933 0.8592 0.8250 277 0.8144 0.8395 0.8267 162 0.8641 0.9408 0.9008 169 0.82 0.7410 0.7785 166 0.8704 0.8598 0.8650 164 0.8876 0.8824 0.8850 170 0.8434 0.8576 0.8505 0.9846
0.0128 21.0 16695 0.1090 0.8993 0.8803 0.8897 142 0.8294 0.8773 0.8526 277 0.8107 0.8457 0.8278 162 0.8678 0.8935 0.8805 169 0.8133 0.7349 0.7722 166 0.8218 0.8720 0.8462 164 0.8889 0.8471 0.8675 170 0.8446 0.852 0.8483 0.9838
0.01 22.0 17490 0.1280 0.9 0.8239 0.8603 142 0.7848 0.8556 0.8187 277 0.8057 0.8704 0.8368 162 0.8674 0.9290 0.8971 169 0.7595 0.7229 0.7407 166 0.8412 0.8720 0.8563 164 0.7989 0.8882 0.8412 170 0.8169 0.8528 0.8344 0.9832
0.0096 23.0 18285 0.1023 0.8889 0.9014 0.8951 142 0.8041 0.8448 0.8239 277 0.8253 0.8457 0.8354 162 0.8415 0.9112 0.875 169 0.7683 0.7590 0.7636 166 0.8118 0.8415 0.8263 164 0.7979 0.8824 0.8380 170 0.8170 0.8536 0.8349 0.9843
0.0088 24.0 19080 0.1172 0.8649 0.9014 0.8828 142 0.8298 0.8448 0.8372 277 0.7816 0.8395 0.8095 162 0.8674 0.9290 0.8971 169 0.7257 0.7651 0.7449 166 0.8136 0.8780 0.8446 164 0.8229 0.8471 0.8348 170 0.8155 0.856 0.8353 0.9829
0.0083 25.0 19875 0.1090 0.7401 0.9225 0.8213 142 0.8363 0.8484 0.8423 277 0.8057 0.8704 0.8368 162 0.8889 0.8994 0.8941 169 0.8176 0.7289 0.7707 166 0.7609 0.8537 0.8046 164 0.8488 0.8588 0.8538 170 0.8150 0.8528 0.8335 0.9830
0.0105 26.0 20670 0.1191 0.7241 0.8873 0.7975 142 0.7468 0.8412 0.7912 277 0.8161 0.8765 0.8452 162 0.8254 0.9231 0.8715 169 0.7384 0.7651 0.7515 166 0.8333 0.8537 0.8434 164 0.8378 0.9118 0.8732 170 0.7853 0.8632 0.8224 0.9814
0.0103 27.0 21465 0.1125 0.8378 0.8732 0.8552 142 0.8566 0.8628 0.8597 277 0.8046 0.8642 0.8333 162 0.8764 0.9231 0.8991 169 0.8289 0.7590 0.7925 166 0.8466 0.8415 0.8440 164 0.8929 0.8824 0.8876 170 0.8502 0.8584 0.8543 0.9847
0.0081 28.0 22260 0.1301 0.8601 0.8662 0.8632 142 0.8489 0.8520 0.8505 277 0.8225 0.8580 0.8399 162 0.8870 0.9290 0.9075 169 0.8067 0.7289 0.7658 166 0.8625 0.8415 0.8519 164 0.8613 0.8765 0.8688 170 0.8504 0.8504 0.8504 0.9850
0.0079 29.0 23055 0.1458 0.9104 0.8592 0.8841 142 0.8185 0.8303 0.8244 277 0.7730 0.7778 0.7754 162 0.8191 0.9112 0.8627 169 0.8013 0.7530 0.7764 166 0.8304 0.8659 0.8478 164 0.8941 0.8941 0.8941 170 0.8321 0.8408 0.8365 0.9834
0.0084 30.0 23850 0.1264 0.8435 0.8732 0.8581 142 0.8328 0.8628 0.8475 277 0.8256 0.8765 0.8503 162 0.9023 0.9290 0.9155 169 0.8531 0.7349 0.7896 166 0.8598 0.8598 0.8598 164 0.8757 0.8706 0.8732 170 0.8543 0.8584 0.8563 0.9848

Framework versions

  • Transformers 4.22.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.